IBM Selectric


The IBM Selectric was a highly successful line of electric typewriters introduced by IBM on 31 July 1961.
Instead of the "basket" of individual typebars that swung up to strike the ribbon and page in a typical typewriter of the period, the Selectric had a chrome-plated plastic "element" that rotated and tilted to the correct position before striking the paper. The element could be easily interchanged to use different fonts within the same document typed on the same typewriter, resurrecting a capability which had been pioneered by typewriters such as the Hammond and Blickensderfer in the late 19th century.
The Selectric also replaced the traditional typewriter's horizontally moving carriage with a roller that turned to advance the paper vertically while the typeball and ribbon mechanism moved horizontally across the paper. The Selectric mechanism was notable for using internal mechanical binary coding and two mechanical digital-to-analog converters, called whiffletree linkages, to select the character to be typed.
The three models of Selectric eventually captured 75 percent of the United States market for electric typewriters used in business. By the Selectric's 25th anniversary, in 1986, a total of more than 13 million machines had been made and sold.
By the 1970s and 1980s, the typewriter market had matured under the market dominance of large companies in Europe and the United States. Eventually the Selectric would face direct major competition from electronic typewriters designed and manufactured in Asia, including Brother Industries and Silver Seiko Ltd. of Japan.
IBM replaced the Selectric line with the IBM Wheelwriter in 1984, and spun off its typewriter business to the newly formed Lexmark in 1991.

History, models, and related machines

Original Selectric

The Selectric typewriter was introduced on 31 July 1961. Its industrial design is credited to influential American designer Eliot Noyes. Noyes had worked on a number of design projects for IBM; prior to his work on the Selectric, he had been commissioned in 1956 by Thomas J. Watson Jr. to create IBM's first house style: these influential efforts, in which Noyes collaborated with Paul Rand, Marcel Breuer, and Charles Eames, have been referred to as the first "house style" program in American business.

Selectric II

The Selectric remained unchanged until 1971 when the Selectric II was introduced. The original design was thereafter referred to as the SelectricI. These machines used the same 88-character typing elements. However they differed from each other in many respects:
  • The Selectric II was available with a Dual Pitch option to allow it to be switched between 10 and 12 characters per inch, whereas the SelectricI was ordered with one "pitch" or the other. Separate elements were available for each pitch. In a few cases the same typeface was available in both pitches, for example, "Courier 72" was the 10-pitch variant of "Courier 12".
  • The Selectric II had a lever that allowed characters to be shifted as much as half a space to the left, whereas the SelectricI did not. This option was available only on dual-pitch models.
  • Stylistically, the Selectric II was squarer at the corners, whereas the Selectric I was rounder.

    Correcting Selectric II

In 1973 the Correcting Selectric II was announced. It added an internal correction feature to the SelectricII, intended to eliminate the need for typists to use cover-up tape, "white-out" correction fluid, or typewriter erasers. The carriage on this machine held both the main typing ribbon cartridge and two small spools for a correction ribbon. A new ribbon type, the Correctable Film ribbon, was introduced at the same time. This produced typing quality equal to the carbon film ribbon, but with a pigment designed to be easily removed from paper.
There were two types of correction tapes: the transparent and slightly adhesive "Lift-Off" tape, or the white "Cover-Up" tape. The spent correction tape was changed independently from the typing ribbon.
The correction key backspaced the carriage by one space and also put the machine in a mode wherein the next character typed would use the correction tape instead of the normal ribbon, and furthermore would not advance the carriage. The typist would press the correction key and then re-type the erroneous character, either lifting it off the page or covering it with white-out powder, then type the correct character. Any number of mistakes could be corrected this way, but the process was entirely manual, as the machine had no memory of the typed characters.
The Selectric II had been announced and was in production when a cam timing issue was identified. The type head ball would strike the character and leave small remnants of ink of the character that was meant to be erased. A lower level engineer, Joe L. Vaughan, overheard the top engineers discussing the issue and offered a solution. Parts were machined for a change to the cam mechanism without introducing any further delays to production, and the fix was a success. Vaughan was recognized for the accomplishment in 1974.

Selectric-based machines with data storage

In 1964 IBM introduced the "Magnetic Tape Selectric Typewriter" and in 1969, a "Magnetic Card Selectric Typewriter". These were sometimes referred to as the "MT/ST" and "MC/ST", respectively. The MC/ST was also available in a "communicating" version which could emulate an IBM 2741 terminal or run its native Correspondence Code. These featured electronically interfaced typing mechanisms and keyboards and a magnetic storage device for recording, editing, and replaying typed material at ca. 12–15 characters per second.
These machines were among the first to provide word processing capability in any form. They used the same elements as ordinary office Selectrics.
In 1972, the "Mag Card Executive" was offered. Like IBM's earlier typebar-based "Executive" models this offered proportional spacing, but unlike them, based on multiples of a 1/60" unit size with up to seven units per character, instead of a unit size of 1/32", 1/36", or 1/45", depending on the size of the typestyle, with up to five units per character as was used on the original "Executive" typewriters. Unlike the various "Selectric Composer" models, there was no provision for setting the machine to vary the letter and word spacing to create justified copy. Some of the fonts originally offered with the Mag Card Executive would later be made available for the Model 50 electronic typewriter, which supported proportional spacing with 96-character elements.
In April 1973, the IBM Mag Card II Typewriter was announced, providing space for up to 8,000 characters in electronic memory.
IBM also sold a tape reader that could be connected to 360 series mainframes, and would read the MT/ST tapes. Thus a document typed on an MT/ST Selectric could also be entered into a mainframe data file.

Selectric Composer

In 1966, IBM released the Selectric Composer for use in phototypesetting applications. This highly-modified Selectric produced camera-ready justified copy using proportional fonts in a variety of font styles ranging from eight points to fourteen points. Material prepared on a properly-adjusted machine by a skillful operator and printed onto baryta paper "would take an expert to tell... was not the product of a Linotype or Monotype machine".
Characters were proportionally spaced, three to nine units wide, the size of a unit being selectable as either 1/72", 1/84" or 1/96" to allow for the three sizes of type. Tab stops could be positioned only at intervals of one-sixth of an inch, or one pica. To support backspacing over previously typed characters, the spacing code for the last forty or so characters typed was mechanically stored by small sliding plates in a carrier wheel.
Like the Varityper with which it competed, the original machine required that material be typed twice if the output was to be justified. The first time was to measure the length of the line and count the spaces, recording measurements read from a special dial on the right margin. The second time it was typed, the operator set the measurements into the dial to set justification for each line. The process was tedious and slow, but did provide a way to get camera-ready, proportionally spaced, justified copy from a desk-sized, affordable machine.
The elements for the Selectric Composer would physically fit on a Selectric and vice versa, but were not interchangeable because the characters were arranged and positioned differently around the element. Selectric Composer elements can be distinguished by their colored index arrow and a series of letters and numbers identifying the font, size, and variation, for example "UN-11-B" for Univers 11-point bold.
In addition to Univers, a Century, Times Roman–like font, and later an "Aldine" font were available, as was a Symbols font. However, the Composer, with its relatively small market, never had anything like the variety of typefaces available as there were for the Selectric. Each font required separate elements for italic and bold versions, and a separate set of roman/italic/bold balls was required for each font size. Not all typefaces were available in bold and italic in every size for every font. Bold italic, condensed, and light fonts were not available. The need to change elements frequently, sometimes multiple times in the same sentence, slowed work down and was a source of owner dissatisfaction. The small plastic balls were themselves somewhat fragile and not designed to withstand frequent handling. Nevertheless, the Composer allowed much more flexible use of different typefonts, allowing small businesses and organizations to approach the capabilities of professional typesetters, at a reduced cost.
Italic and bold were available for some but not all font "families". Up to three point sizes existed for each style and variety. In contrast with the Selectric, a change of type style usually required purchase of a family of type balls, rather than just a single one. Just as in the days of metal type, no single printing shop had every typeface, it was also rare for a user to possess a complete set, but no user needed to; a publication that could use the somewhat bookish, academic Aldine Roman would probably not have much use for the Classified News or Copperplate Gothic. The following font families were available for the Composer:
  • Aldine Roman
  • Baskerville
  • Bodoni
  • Century
  • Classified News
  • Copperplate Gothic
  • Journal Roman
  • Orator
  • Press Roman ; includes Press Roman Symbol
  • Pyramid
  • Theme
  • Univers
  • Ruling Font
In contrast to the Selectric typewriter, only IBM made elements for the standard typefaces usually used with the Composer. GP, which made elements for the Selectric typewriter, did make one Composer element in an Old English typeface.
In 1967, a "Magnetic Tape Selectric Composer" appeared, and in 1978, a "Magnetic Card Selectric Composer". The "Electronic Composer" was marketed from 1975. All these models used the same Selectric Composer output mechanism. However, the magnetic or internal storage allowed these improved models to avoid the need to type in justified text twice, or to manually set the mechanism for justification of each line. Furthermore, tapes or cards originally recorded on the much less-expensive and easier-to-operate Selectric typewriter versions, the MT/ST or MC/ST, could be read by the "Composer" equivalents. This allowed much of the time-consuming manual transcription work and proofreading to be performed on less-expensive equipment, while a final high-quality output could be printed on the Composer.
For a number of years after its introduction, the Selectric Composer was considered a highly desirable, powerful desk-sized cold type setting system, affordable by small businesses and organizations. It was usually leased, including a service contract for the skilled labor required to fix and adjust it. The Selectric Composer was accorded respect and affection among small publishers, unrivaled until the appearance of the Apple Macintosh, laser printer, and desktop publishing software. Ultimately the system proved a transitional product, as it was displaced by cheaper and faster phototypesetting, and then in the 1980s by word processors and general-purpose computers.