Genetically modified fish


Genetically modified fish are organisms from the taxonomic clade which includes the classes Agnatha, Chondrichthyes and Osteichthyes whose genetic material has been altered using genetic engineering techniques. In most cases, the aim is to introduce a new trait to the fish which does not occur naturally in the species, i.e. transgenesis.
GM fish are used in scientific research and kept as pets. They are being developed as environmental pollutant sentinels and for use in aquaculture food production. In 2015, the AquAdvantage salmon was approved by the US Food and Drug Administration for commercial production, sale and consumption, making it the first genetically modified animal to be approved for human consumption. Some GM fish that have been created have promoters driving an over-production of "all fish" growth hormone. This results in dramatic growth enhancement in several species, including salmonids, carps and tilapias.
Critics have objected to GM fish on several grounds, including ecological concerns, animal welfare concerns and with respect to whether using them as food is safe and whether GM fish are needed to help address the world's food needs.

History and process

The first transgenic fish were produced in China in 1985. As of 2013, approximately 50 species of fish have been subject to genetic modification. This has resulted in more than 400 fish/trait combinations. Most of the modifications have been conducted on food species, such as Atlantic salmon, tilapia and common carp.
Generally, genetic modification entails manipulation of DNA. The process is known as cisgenesis when a gene is transferred between organisms that could be conventionally bred, or transgenesis when a gene from one species is added to a different species. Gene transfer into the genome of the desired organism, as for fish in this case, requires a vector like a lentivirus or mechanical/physical insertion of the altered genes into the nucleus of the host by means of a micro syringe or a gene gun.

Uses

Research

Transgenic fish are used in research covering five broad areas
  • Enhancing the traits of commercially available fish
  • Their use as bioreactors for the development of bio-medically important proteins
  • Their use as indicators of aquatic pollutants
  • Developing new non-mammalian animal models
  • Functional genomics studies
Most GM fish are used in basic research in genetics and development. Two species of fish, zebrafish and medaka, are most commonly modified because they have optically clear chorions, develop rapidly, the 1-cell embryo is easy to see and micro-inject with transgenic DNA, and zebrafish have the capability of regenerating their organ tissues. They are also used in drug discovery. GM zebrafish are being explored for benefits of unlocking human organ tissue diseases and failure mysteries. For instance, zebrafish are used to understand heart tissue repair and regeneration in efforts to study and discover cures for cardiovascular diseases.
Transgenic rainbow trout have been developed to study muscle development. The introduced transgene causes green fluorescence to appear in fast twitch muscle fibres early in development which persist throughout life. It has been suggested the fish might be used as indicators of aquatic pollutants or other factors which influence development.
In intensive fish farming, the fish are kept at high stocking densities. This means they suffer from frequent transmission of contagious diseases, a problem which is being addressed by GM research. Grass carp have been modified with a transgene coding for human lactoferrin, which doubles their survival rate relative to control fish after exposure to Aeromonas bacteria and Grass carp hemorrhage virus. Cecropin has been used in channel catfish to enhance their protection against several pathogenic bacteria by 2–4 times.

Recreation

Pets

is a patented technology which allows GM fish to express jellyfish and sea coral proteins giving the fish bright red, green or orange fluorescent colors when viewed in ultraviolet light. Although the fish were originally created and patented for scientific research at the National University of Singapore, a Texas company, Yorktown Technologies, obtained the rights to market the fish as pets. They became the first genetically modified animal to become publicly available as a pet when introduced for commercial in 2003. They were quickly banned for sale in California; however, they are now on shelves once again in this state. As of 2013, Glofish are only sold in the US.
Other transgenic lines of pet fish include Medaka which remain transparent throughout their lives and pink body color transgenic angelfish and lionhead fish expressing the Acropora coral red fluorescent protein.
The ocean pout type III antifreeze protein transgene has been successfully micro-injected and expressed in goldfish. The transgenic goldfish showed higher cold tolerance compared with controls.

Food

One area of intensive research with GM fish has aimed to increase food production by modifying the expression of growth hormone. The relative increases in growth differ between species. They range from a doubling in weight, to some fish that are almost 100 times heavier than the wild-type at a comparable age. This research area has resulted in dramatic growth enhancement in several species, including salmon, trout and tilapia. Other sources indicate an 11-fold and 30-fold increase in growth of salmon and mud loach, respectively, compared to wild-type fish. Transgenic fish development has reached the stage where several species are ready to be marketed in different countries, for example, GM tilapia in Cuba, GM carp in the People's Republic of China, and GM salmon in the US and Canada. In 2014, it was reported that applications for the approval of transgenic fish as food had been made in Canada, China, Cuba and the United States.
Over-production of GH from the pituitary gland increases growth rate mainly by an increase in food consumption by the fish, but also by a 10 to 15% increase in feed conversion efficiency.
Another approach to increasing meat production in GM fish is "double muscling". This results in a phenotype similar to that of Belgian Blue cattle in rainbow trout. It is achieved by using transgenes expressing follistatin, which inhibits myostatin, and the development of two muscle layers.

AquAdvantage salmon

In November 2015, the FDA of the USA approved the AquAdvantage salmon created by AquaBounty for commercial production, sale and consumption. It is the first genetically modified animal to be approved for human consumption. The fish is essentially an Atlantic salmon with a single gene complex inserted: a growth hormone regulating gene from a Chinook salmon with a promoter sequence from an ocean pout. This permits the GM salmon to produce GH year round rather than pausing for part of the year as do wild-type Atlantic salmon. The wild-type salmon takes 24 to 30 months to reach market size whereas the GM salmon require 18 months for the GM fish to achieve this. AquaBounty argue that their GM salmon can be grown nearer to end-markets with greater efficiency than the Atlantic salmon which are currently reared in remote coastal fish farms, thereby making it better for the environment, with recycled waste and lower transport costs.
To prevent the genetically modified fish inadvertently breeding with wild salmon, all the fish raised for food are females, triploid, and 99% are reproductively sterile. The fish are raised in a facility in Panama with physical barriers and geographical containment such as river and ocean temperatures too high to support salmon survival to prevent escape. The FDA has determined AquAdvantage would not have a significant effect on the environment in the United States. A fish farm is also being readied in Indiana where the FDA has approved importation of salmon eggs. As of August 2017, GMO salmon is being sold in Canada. Sales in the US began in May 2021. AquaBounty ended fish production in December 2024.

Detecting aquatic pollution (potential)

Several research groups have been developing GM zebrafish to detect aquatic pollution. The laboratory that developed the GloFish originally intended them to change color in the presence of pollutants, as environmental sentinels. Teams at the University of Cincinnati and Tulane University have been developing GM fish for the same purpose.
Several transgenic methods have been used to introduce target DNA into zebrafish for environmental monitoring, including micro-injection, electroporation, particle gun bombardment, liposome-mediated gene transfer, and sperm-mediated gene transfer. Micro-injection is the most commonly used method to produce transgenic zebrafish as this produces the highest survival rate.

Regulation

The regulation of genetic engineering concerns the approaches taken by governments to assess and manage the risks associated with the development and release of genetically modified crops. There are differences in the regulation of GMOs between countries, with some of the most marked differences occurring between the US and Europe. Regulation varies in a given country depending on the intended use of the products of the genetic engineering. For example, a fish not intended for food use is generally not reviewed by authorities responsible for food safety.
The US FDA guidelines for evaluating transgenic animals define transgenic constructs as "drugs" regulated under the animal drug provisions of the Federal Food and Cosmetic Act. This classification is important for several reasons, including that it places all GM food animal permits under the jurisdiction of the FDA's Center for Veterinary Medicine and imposes limits on what information the FDA can release to the public, and furthermore, it avoids a more open food safety review process.
The US states of Washington and Maine have imposed permanent bans on the production of transgenic fish.