Ganz Works


The Ganz Machinery Works Holding is a Hungarian holding company. Its products are related to rail transport, power generation, and water supply, among other industries.
The original Ganz Works or Ganz operated between 1845 and 1949 in Budapest, Hungary. It was named after Ábrahám Ganz, the founder and manager of the company. Ganz is probably best known for the manufacture of tramcars, but was also a pioneer in the application of three-phase alternating current to electric railways.
Ganz also made ships, bridge steel structures and high-voltage equipment. In the early 20th century the company experienced its heyday and became the third-largest industrial enterprise in the Kingdom of Hungary after the Manfréd Weiss Steel and Metal Works and the MÁVAG company.
Since 1989, various parts of Ganz have been taken over by other companies.

History

The company was founded by Ábrahám Ganz in 1844. He was invited to Pest, Hungary, by Count István Széchenyi and became the casting master at the Roller Mill Plant. In 1854 he began manufacturing hard cast railroad wheels in his own plant founded in 1844. The management of the steam mill paid a share of the profit to Ganz. This enabled him to buy, in 1844, land and a house for 4500 Forints in Víziváros, Buda castle district. Abraham Ganz built his own foundry on this site and started to work there with seven assistants. They made mostly casting products for the needs of the people of the city. In 1845, he bought the neighbouring site and expanded his foundry with a cupola furnace. He gave his brother, Henrik a job as a clerk, because of the growing administration work. He made a profit in the first year, and his factory grew, even though he had not yet engaged in mass production. In 1846, at the third Hungarian Industrywork Exhibition, he introduced his stoves to the public. He won the silver medal of the exhibition committee and the bronze medaille from Archduke Joseph, Palatine of Hungary.
During the Hungarian Revolution of 1848 the foundry made ten cannons and many cannonballs for the Hungarian army. Because of this, the Military Court of Austria impeached him. He got seven weeks in prison as penalty, but because of his Swiss citizenship he was acquitted of the charge.
Ganz recognized that, to develop his factory, he had to make products that were mass-produced. In 1846 the Pest-Vác railway line was built. At that time, European foundries made wrought iron rims for spoked wagon wheels by pouring the casts in shapes in sand, and leaving them to cool down. He successfully developed a railway wheel casting technology; it was the new method of "crust-casting" to produce cheap yet sturdy iron railway wheels, which greatly contributed to the rapid railway development in Central Europe. 86,074 pieces of hard cast wheels had been sold to 59 European railway companies until 1866. Consequently, this factory played an important role in building the infrastructure of the Hungarian Kingdom and the Austro-Hungarian Empire. At this time the agricultural machines, steam locomotives, pumps and the railway carriages were the main products. At the beginning of the 20th century, 60 to 80% of the factory's products were sold for export.
After the death of Abraham Ganz, the heirs entrusted the management of the factory to his direct colleagues at Ganz Művek: Antal Eichleter, Ulrik Keller and Andreas Mechwart, which then took the name Ganz & Co. The Ganz family sold the company, which consisted of five departments, and in April 1869 it was transformed into a joint-stock company, and continued its operations under the name of "Ganz és Társa vasontöde és Gépgyár Rt." The technical director was András Mechwart, under whose direction Ganz became one of the most important groups of machine building companies in the Austro-Hungarian Monarchy after 1869.
At the end of the 19th century, the products of the Ganz and Partner Iron Mill and Machine Factory promoted the expansion of alternating-current power transmissions.

Prominent engineers

Prominent engineers at Ganz works included András Mechwart, Károly Zipernowsky, Miksa Déri, Ottó Titusz Bláthy, Kálmán Kandó, György Jendrassik and Ernő Wilczek.

Revolution in the milling industry

The invention of the modern industrial mill – by András Mechwart in 1874 – guaranteed a solid technological superiority and revolutionized the world's milling industry. Budapest's milling industry grow the second largest in the world, behind the American Minneapolis. The Hungarian grain export increased by 66% within some years.

Power plants, generators turbines and transformers

In 1878, the company's general manager András Mechwart founded the Department of Electrical Engineering headed by Károly Zipernowsky. Engineers Miksa Déri and Ottó Bláthy also worked at the department producing direct-current machines and arc lamps.
In 1878, the company began producing equipment for electric lighting and, by 1883, had installed over fifty systems in Austria-Hungary. Their AC systems used arc and incandescent lamps, generators, and other equipment.

Generators

The first turbo generators were water turbines which drove electric generators. The first Hungarian water turbine was designed by engineers of the Ganz Works in 1866. Mass production of dynamo generators started in 1883.
The missing link of a full Voltage Sensitive/Voltage Intensive system was the reliable alternating current constant voltage generator. Therefore, the invention of the constant voltage generator by the Ganz Works in 1883 had a crucial role in the beginnings of industrial scale AC power generation, because only these types of generators can produce a stable output voltage, regardless of the actual load.

Transformers

In cooperation, Zipernovsky, Bláthy and Déri constructed and patented the transformer. The "transformer" was named by Ottó Titusz Bláthy. The three invented the first high efficiency, closed core shunt connection transformer. They also invented the modern power distribution system: Instead of a series of connections they connected supply transformers in parallel to the main line.
The transformer patents described two basic principles. Loads were to be connected in parallel, not in series as had been the general practice until 1885. Additionally, the inventors described the closed armature as an essential part of the transformer. Both factors assisted the stabilisation of voltage under varying load, and allowed definition of standard voltages for distribution and loads. The parallel connection and efficient closed core made construction of electrical distribution systems technically and economically feasible.
The Ganz Works built the first transformers using iron plating of enamelled mild iron wire, and started to use laminated cores to eliminate eddy currents
In May 1885, at the Hungarian National Exhibition in Budapest, Deri, Blathy, and Zipernowski held a large-scale demonstration of what is widely regarded as the prototype of modern AC lighting systems. Their system used 75 transformers in parallel connection, supplying 1,067 incandescent Edison lamps from an AC generator that provided 1,350 V.

AC Power stations

In 1886, the ZBD engineers designed, and the company supplied, electrical equipment for the world's first power station to use AC generators to power a parallel connected common electrical network. This was the Italian steam-powered Rome-Cerchi power plant.
Following the introduction of the transformer, the Ganz Works changed over to production of alternating-current equipment. For instance, Rome's electricity was supplied by hydroelectric plant and long-distance energy transfer.

Electricity meters

The first mass-produced kilowatt-hour meter, based on Hungarian Ottó Bláthy's patent and named after him, was presented by the Ganz Works at the Frankfurt Fair in the autumn of 1889, and the company was marketing the first induction kilowatt-hour meter by the end of the year. These were the first alternating-current wattmeters, known by the name of Bláthy-meters.

Industrial refrigerators and air conditioners

In 1894, Hungarian inventor and industrialist István Röck started to manufacture a large industrial ammonia refrigerator which was powered by Ganz electric compressors. At the 1896 Millennium Exhibition, Röck and the Esslingen Machine Works presented a 6-tonne capacity artificial ice producing plant. In 1906, the first large Hungarian cold store opened in Tóth Kálmán Street, Budapest, the machine was manufactured by the Ganz Works. Until nationalisation after the Second World War, large-scale industrial refrigerator production in Hungary was in the hands of Röck and Ganz Works.
The contract between Ganz and Egypt in the 1930s played a key role in the development of cooling equipment: railcars delivered to Egypt were equipped with air-conditioning cooling systems. The collective of the Ganz factory designed and built the 3-cylinder, 20 kW compressors with freon refrigerant, air condenser and evaporator. The machine could also be converted to heat pump operation.

ICE engines and vehicles

The beginning of gas engine manufacturing in Hungary is linked to Donát Bánki and János Csonka but it is not clear that they ever worked for Ganz.
Ganz produced engines whose designs were licensed to Western European partners, notably in the United Kingdom and Italy.
;Timeline
  • 1889 the first four-stroke gas engine was built by the Ganz factory
  • 1893 the manufacture of paraffin and petrol fuelled engine with carburetor
  • 1898 the manufacture of engines with the Bánki water injection system
  • 1908 the introduction of a new petrol engine type, the series Am
  • 1913 the manufacture of Büssing petrol engines for trucks
  • 1914–18 the manufacture of fighter plane engines
  • 1916 the manufacture of petrol engines, type Fiat
  • 1920 the modification of petrol engines for suction gas operation
  • 1924 György Jendrassik started his engine development activity
  • 1928 the first railway diesel engine was completed, according to the plans of Ganz-Jendrassik
  • 1929 the first export delivery of a railway engine using the system of Ganz-Jendrassik
  • 1934 there was an engine reliability World Competition in the USSR where the Ganz engine achieved the best fuel consumption in its category
  • 1939 Scale model of Ganz Ac Electric locomotive exhibited at the Italy Pavilion of the New York World's Fair
  • 1939–42 construction of the Jendrassik Cs-1 turboprop engine
  • 1944 the first application of the engine type XII JV 170/240 in a motor-train set
  • 1953 modernisationon of the diesel engine system Ganz-Jendrassik
  • 1959 the union of the Ganz factory and the MÁVAG company, establishing Ganz-MÁVAG