Fluid power
Fluid power is the use of fluids under pressure to generate, control, and transmit power. Fluid power is conventionally subdivided into hydraulics and pneumatics. Although steam is also a fluid, steam power is usually classified separately from fluid power. Compressed-air and water-pressure systems were once used to transmit power from a central source to industrial users over extended geographic areas; fluid power systems today are usually within a single building or mobile machine.
Fluid power systems perform work by a pressurized fluid bearing directly on a piston in a cylinder or in a fluid motor. A fluid cylinder produces a force resulting in linear motion, whereas a fluid motor produces torque resulting in rotary motion. Within a fluid power system, cylinders and motors do the desired work. Control components such as valves regulate the system.
Elements
A fluid power system has a pump driven by a prime mover that converts mechanical energy into fluid energy. Pressurized fluid is controlled and directed by valves into an actuator device such as a hydraulic cylinder or pneumatic cylinder, to provide linear motion, or a hydraulic motor or pneumatic motor, to provide rotary motion or torque. Rotary motion may be continuous or confined to less than one revolution.Hydraulic pumps
Dynamic pumpsThis type is generally used for low-pressure, high volume flow applications. Since they are not capable of withstanding high pressures, there is little use in the fluid power field. Their maximum pressure is limited to 250-300 psi. This type of pump is primarily used for transporting fluids from one location to another. Centrifugal and axial flow propeller pumps are the two most common types of dynamic pumps.
Positive displacement pumps
This type is universally used for fluid power systems. With this pump, a fixed amount of fluid is ejected into the hydraulic system per revolution of pump shaft rotation. These pumps are capable of overcoming the pressure resulting from the mechanical loads on the system as well as the resistance to flow due to friction. These two features are highly desirable in fluid power pumps. These pumps also have the following advantages over non positive displacement pumps:
- High-pressure capability
- Small compact size
- High volumetric efficiency
- Small changes in efficiency throughout the design pressure range
Characteristics
Fluid power systems are susceptible to pressure and flow losses within pipes and control devices. Fluid power systems are equipped with filters and other measures to preserve the cleanliness of the working fluid. Any dirt in the system can cause wear of seals and leakage, or can obstruct control valves and cause erratic operation. The hydraulic fluid itself is sensitive to temperature and pressure along with being somewhat compressible. These can cause systems to not run properly. If not run properly, cavitation and aeration can occur.
Application
Mobile applications of fluid power are widespread. Nearly every self-propelled wheeled vehicle has either hydraulically-operated or pneumatically-operated brakes. Earthmoving equipment such as bulldozers, backhoes and others use powerful hydraulic systems for digging and also for propulsion. A very compact fluid power system is the automatic transmission found in many vehicles, which includes a hydraulic torque converter.Fluid power is also used in automated systems, where tools or work pieces are moved or held using fluid power. Variable-flow control valves and position sensors may be included in a servomechanism system for precision machine tools. Below is a more detailed list of applications and categories that fluid power is used for:
- Industrial
- * metalworking
- * injection molding
- * controllers
- * material handling
- Aerospace
- * landing gears
- * brakes
Pneumatic and hydraulic systems compared
; Precision: Unlike liquids, gases change volume significantly when pressurized making it difficult to achieve precision.