Flight deck
The flight deck of an aircraft carrier is the surface on which its aircraft take off and land, essentially a miniature airfield at sea. On smaller naval ships which do not have aviation as a primary mission, the landing area for helicopters and other VTOL aircraft is also referred to as the flight deck. The official U.S. Navy term for these vessels is "air-capable ships".
Flight decks have been in use upon ships since 1910, the American pilot Eugene Ely being the first individual to take off from a warship. Initially consisting of wooden ramps built over the forecastle of capital ships, a number of battlecruisers, including the British and, the American and, and the Japanese and battleship, were converted to aircraft carriers during the interwar period. The first aircraft carrier to feature a full-length flight deck, akin to the configuration of the modern vessels, was the converted liner, which entered service in 1918. The armoured flight deck was another innovation pioneered by the Royal Navy during the 1930s. Early landing arrangements relied on the low speed and landing speed of the era's aircraft, being simply "caught" by a team of deck-hands in a fairly hazardous arrangement, but these became impractical as heavier aircraft with higher landing speeds emerged; thus an arrangement of arrestor cables and tailhooks soon became the favoured approach.
During the Cold War era, numerous innovations were introduced to the flight deck. The angled flight deck, invented by Dennis Cambell of the Royal Navy, was one prominent design feature that drastically simplified aircraft recovery and deck movements, enabling landing and launching operations to be performed simultaneously rather than interchangeably; it also better handled the higher landing speeds of jet-powered aircraft. In 1952, became the first aircraft carrier to trial the angled flight deck. Another advance was the ski-jump, which fitted an angled ramp on the flight deck near the end of the aircraft's takeoff run; the change greatly reduced the distance required and became particularly useful for operating STOVL aircraft. Furthermore, various unsuccessful concepts to replace or complement the conventional flight deck have emerged over the years, from the flexible flight deck to the submarine aircraft carrier and flying boat fighter aircraft.
Evolution
Early
The first flight decks were inclined wooden ramps built over the forecastle of warships. Eugene Ely made the first fixed-wing aircraft take-off from a warship from on 14 November 1910.Two months later, on 18 January 1911, Ely landed his Curtiss pusher plane on a platform on anchored in San Francisco Bay using the first tailhook system, designed and built by circus performer and aviator Hugh Robinson. Ely told a reporter: "It was easy enough. I think the trick could be successfully turned nine times out of ten." On 9 May 1912, Commander Charles Samson became the first man to take off from a ship which was underway when he flew his Short S.27 off, which was steaming at.
Because the take-off speed of early aircraft was so low, it was possible for an aircraft to make a very short take off when the launching ship was steaming into the wind. Later, removable "flying-off platforms" appeared on the gun turrets of battleships and battlecruisers starting with, allowing aircraft to be flown off for scouting purposes, although there was no chance of recovery.
On 2 August 1917, while performing trials, Squadron Commander Edwin Harris Dunning landed a Sopwith Pup successfully on board the flying-off platform of, becoming the first person to land an aircraft on a moving ship. However, on his third attempt, a tire burst as he attempted to land, causing the aircraft to go over the side, killing him; thus Dunning also has the dubious distinction of being the first person to die in an aircraft carrier landing accident.
The landing arrangements on Furious were highly unsatisfactory. In order to land, aircraft had to maneuver around the superstructure. Furious was therefore returned to dockyard hands to have a deck added aft for landing, on top of a new hangar. The central superstructure remained, however, and turbulence caused by it badly affected the landing deck.
Full length
The first aircraft carrier that began to show the configuration of the modern vessel was the converted liner, which had a large flat wooden deck added over the entire length of the hull, giving a combined landing and take-off deck unobstructed by superstructure turbulence. Because of her unobstructed flight deck, Argus had no fixed conning tower and no funnel. Rather, exhaust gases were trunked down the side of the ship and ejected under the fantail of the flight deck.The lack of a command position and funnel was unsatisfactory, and Argus was used to experiment with various ideas to remedy the solution. A photograph in 1917 shows her with a canvas mock-up of a starboard "island" superstructure and funnel. This was placed on the starboard side because the rotary engines of some early aircraft created torque which pulled the nose left, meaning an aircraft naturally yawed to port on take-off; therefore, it was desirable that they turned away from the fixed superstructure. This became the typical aircraft carrier arrangement and was used in the next British carriers, and.
After World War I, battlecruisers that otherwise would have been discarded under the Washington Naval Treaty—such as the British and, the American and, and the Japanese and battleship —were converted to carriers along the above lines. Being large and fast they were perfectly suited to this role; the heavy armoring and scantlings and low speed of the converted battleship Eagle served to be something of a handicap in practice.
Because the military effectiveness of aircraft carriers was then unknown, early ships were typically equipped with cruiser-calibre guns to aid in their defense if surprised by enemy warships. These guns were generally removed in World War II and replaced with anti-aircraft guns, as carrier doctrine developed the "task force" model, where the carrier's defense against surface ships would be a combination of escorting warships and its own aircraft.
In ships of this configuration, the hangar deck was the strength deck and an integral part of the hull, and the hangar and light steel flight deck were considered to be part of the superstructure. Such ships were still being built into the late 1940s, classic examples being the U.S. Navy's and carriers. However, in 1936, the Royal Navy began construction of the.
In these ships, the flight deck was the strength deck, an integral part of the hull, and was heavily armored to protect the ship and her air complement. The flight deck as the strength deck was adopted for later construction. This was necessitated by the ever-increasing size of the ships, from the 13,000 ton in 1922 to over 100,000 tons in the latest and carriers.
Armored
When aircraft carriers supplanted battleships as the primary fleet capital ship, there were two schools of thought on the question of armor protection being included into the flight deck. The United States Navy initially favored unarmored flight decks because they maximized aircraft carrier hangar and flight deck size, which in turn maximized aircraft capacity in the hangar, and on the flight deck, in the form of a permanent "deck park" for a large proportion of the aircraft carried.In 1936 the Royal Navy developed the armored flight deck aircraft carrier which also enclosed the hangar sides and ends with armor. The addition of armor to the flight deck offered aircraft below some protection against aerial bombs while the armored hangar sides and ends helped to minimize damage and casualties from explosions or fires within or outside the hangar. The addition of armor to the hangar forced a reduction in top-weight, so the hangar height was reduced, and this restricted the types of aircraft that these ships could carry, although the Royal Navy's armored carriers did carry spare aircraft in the hangar overheads.
The armor also reduced the length of the flight deck, reducing the maximum aircraft capacity of the armored flight deck aircraft carrier. Additionally, Royal Navy aircraft carriers did not use a permanent deck park until approximately 1943; before then the aircraft capacity of RN aircraft carriers was limited to their hangar capacity.
The 23,000-ton British had a hangar capacity for 36 Swordfish-sized aircraft and a single hangar, but carried up to 57 aircraft with a permanent deck park, while the 23,400-ton featured increased hangar capacity with a upper hangar and the addition of a lower hangar, forward of the after elevator, which had a total capacity of 52 Swordfish-sized aircraft or a mix of 48 late-war aircraft in the hangar plus 24 aircraft in a permanent deck park, but carried up to 81 aircraft with a deck park.
The 27,500-ton USN had a hangar that was designed to handle a mix of 72 prewar USN aircraft. but carried up to 104 late-war aircraft using both the hangar and a permanent deck park. The experience of World War II caused the USN to change their design policy in favor of armored flight decks on much larger ships: "The main armor carried on is the heavy armored flight deck. This was to prove a significant factor in the catastrophic fire and explosions that occurred on Enterprises flight deck in 1969. The US Navy learned its lesson the hard way during World War II when all its carriers had only armored hangar decks. All attack carriers built since the have had armored flight decks."
Landing
Landing arrangements were originally primitive, with aircraft simply being "caught" by a team of deck-hands who would run out from the wings of the flight deck and grab a part of the aircraft to slow it down. This dangerous procedure was only possible with early aircraft of low weight and landing speed. Arrangements of nets served to catch the aircraft should the latter fail, although this was likely to cause structural damage. A non-skid deck surface is important to prevent aircraft from sliding on a wet deck as the ship rolls.Landing larger and faster aircraft on a flight deck was made possible through the use of arresting cables installed on the flight deck and a tailhook installed on the aircraft. Early carriers had a very large number of arrestor cables or "wires". Current U.S. Navy carriers have three or four steel cables stretched across the deck at intervals which bring a plane, traveling at, to a complete stop in about.
The cables are set to stop each aircraft at the same place on the deck, regardless of the size or weight of the plane. During World War II, large net barriers would be erected across the flight deck so aircraft could be parked on the forward part of the deck and recovered on the after part. This allowed increased complements but resulted in a lengthened launch and recovery cycle as aircraft were shuffled around the carrier to allow take-off or landing operations.
A barricade is an emergency system used if a normal arrestment cannot be made. Barricade webbing engages the wings of the landing aircraft, and momentum is transferred to the arresting engine.