Derivative test
In calculus, a derivative test uses the derivatives of a function to locate the critical points of a function and determine whether each point is a local maximum, a local minimum, or a saddle point. Derivative tests can also give information about the concavity of a function.
The usefulness of derivatives to find extrema is proved mathematically by Fermat's theorem of stationary points.
First-derivative test
The first-derivative test examines a function's monotonic properties, focusing on a particular point in its domain. If the function "switches" from increasing to decreasing at the point, then the function will achieve a highest value at that point. Similarly, if the function "switches" from decreasing to increasing at the point, then it will achieve a least value at that point. If the function fails to "switch" and remains increasing or remains decreasing, then no highest or least value is achieved.One can examine a function's monotonicity without calculus. However, calculus is usually helpful because there are sufficient conditions that guarantee the monotonicity properties above, and these conditions apply to the vast majority of functions one would encounter.
Precise statement of monotonicity properties
Stated precisely, suppose that f is a real-valued function defined on some open interval containing the point x and suppose further that f is continuous at x.- If there exists a positive number r > 0 such that f is weakly increasing on and weakly decreasing on, then f has a local maximum at x.
- If there exists a positive number r > 0 such that f is strictly increasing on and strictly increasing on, then f is strictly increasing on and does not have a local maximum or minimum at x.
Precise statement of first-derivative test
The first-derivative test depends on the "increasing–decreasing test", which is itself ultimately a consequence of the mean value theorem. It is a direct consequence of the way the derivative is defined and its connection to decrease and increase of a function locally, combined with the previous section.Suppose f is a real-valued function of a real variable defined on some interval containing the critical point a. Further suppose that f is continuous at a and differentiable on some open interval containing a, except possibly at a itself.
- If there exists a positive number r > 0 such that for every x in we have and for every x in we have then f has a local maximum at a.
- If there exists a positive number r > 0 such that for every x in we have and for every x in we have then f has a local minimum at a.
- If there exists a positive number r > 0 such that for every x in ∪ we have then f is strictly increasing at a and has neither a local maximum nor a local minimum there.
- If none of the above conditions hold, then the test fails. = x2 sin).
Applications
The first-derivative test is helpful in solving optimization problems in physics, economics, and engineering. In conjunction with the extreme value theorem, it can be used to find the absolute maximum and minimum of a real-valued function defined on a closed and bounded interval. In conjunction with other information such as concavity, inflection points, and asymptotes, it can be used to sketch the graph of a function.Second-derivative test (single variable)
After establishing the critical points of a function, the second-derivative test uses the value of the second derivative at those points to determine whether such points are a local maximum or a local minimum. If the function f is twice-differentiable at a critical point x, then:- If, then has a local maximum at.
- If, then has a local minimum at.
- If, the test is inconclusive.
Proof of the second-derivative test
Suppose we have . By assumption,. ThenThus, for h sufficiently small we get
which means that if , and that if . Now, by the first-derivative test, has a local minimum at.
Concavity test
A related but distinct use of second derivatives is to determine whether a function is concave up or concave down at a point. It does not, however, provide information about inflection points. Specifically, a twice-differentiable function f is concave up if and concave down if. Note that if, then has zero second derivative, yet is not an inflection point, so the second derivative alone does not give enough information to determine whether a given point is an inflection point.Higher-order derivative test
The higher-order derivative test or general derivative test is able to determine whether a function's critical points are maxima, minima, or points of inflection for a wider variety of functions than the second-order derivative test. As shown below, the second-derivative test is mathematically identical to the special case of n = 1 in the higher-order derivative test.Let f be a real-valued, sufficiently differentiable function on an interval, let, and let be a natural number. Also let all the derivatives of f at c be zero up to and including the n-th derivative, but with the th derivative being non-zero:
There are four possibilities, the first two cases where c is an extremum, the second two where c is a saddle point:
- If ' is even and, then c is a local maximum.
- If ' is even and, then c is a local minimum.
- If ' is odd and, then c is a strictly decreasing point of inflection.
- If ' is odd and, then c is a strictly increasing point of inflection.
Example
Say we want to perform the general derivative test on the function at the point. To do this, we calculate the derivatives of the function and then evaluate them at the point of interest until the result is nonzero.As shown above, at the point, the function has all of its derivatives at 0 equal to 0, except for the 6th derivative, which is positive. Thus n = 5, and by the test, there is a local minimum at 0.