Camelina sativa


Camelina sativa is a flowering plant in the family Brassicaceae usually known as camelina, gold-of-pleasure, or false flax, but also occasionally as wild flax, linseed dodder, German sesame, or Siberian oilseed. It is native to Europe and areas of Central Asia, but cultivated as an oilseed crop mainly in Europe and in North America. It is not related to true flax, which is in the family Linaceae.

Description

As a summer or winter annual plant, camelina grows to heights of, with branching stems which become woody at maturity. The leaves are alternate on the stem, and lanceolate with a length from and a width of. Leaves and stems may be partially hairy. In the UK, it blooms between June and July. Its abundant, four-petaled flowers are pale yellow in colour and cross-shaped. Later, it produces a fruit which is pear-shaped with a short beak. The seeds are brown or orange in colour and a length of. The 1,000-seed weight ranges from.

Distribution

Today, camelina is found wild or cultivated in almost all regions of Europe, Asia, and North America, but also in South America, Australia, and New Zealand. Camelina seems to be particularly adapted to cold semiarid climate zone.

History

C. sativa has been traditionally cultivated as an oilseed crop to produce vegetable oil and animal feed. Ample archeological evidence shows it has been grown in Europe for at least 3,000 years. The earliest archaeologic sites where it was found include the Neolithic levels at Auvernier, Switzerland, the Chalcolithic level at Pefkakia in Greece, and Sucidava-Celei, Romania. During the Bronze Age and Iron Age, it was an important agricultural crop in northern Greece beyond the current range of the olive. It apparently continued to be grown at the time of the Roman Empire, although its Greek and Latin names are not known. As early as 600 BC, it was being sown as a monoculture around the Rhine River Valley, and was thought to have spread mainly by coexisting as a weed with flax monocultures.
Until the 1940s, camelina was an important oil crop in eastern and central Europe, and it is still cultivated in a few parts of Europe for its seed oil. Camelina oil was used in oil lamps and as an edible oil. It was possibly brought to North America unintentionally as a weed with flaxseed, and has had limited commercial importance until modern times. Currently, the breeding potential is unexplored compared to other oilseeds commercially grown around the world.

Uses

The seed oil was used in the kitchen or burnt in lamps.

Human food

The crop is now being researched due to its exceptionally high level of omega-3 fatty acids, which is uncommon in vegetable sources. Seeds contain 38 to 43% oil and 27 to 32% protein. Over 50% of the fatty acids in cold-pressed camelina oil are polyunsaturated. The oil is also very rich in natural antioxidants, such as tocopherols, making this highly stable oil very resistant to oxidation and rancidity. It has 1–3% erucic acid; recently, several low-erucic and zero-erucic Camelina sativa varieties have been introduced. The vitamin E content of camelina oil is approximately 110 mg/100 g. It is well suited for use as a cooking oil as it has an almond-like flavor and aroma.
16:018:018:118:2 18:3 20:020:122:1
Camelina7.83.016.823.031.2012.02.8
Canola6.2061.321.66.6000
Flax5.33.116.214.759.6000.9
Sunflower6.04.016.572.40000

Traditional speciality guaranteed

The oil is registered under the name "Olej rydzowy tradycyjny" as a traditional speciality guaranteed product in the European Union and the United Kingdom.

Biodiesel and jet fuel

The US state of Montana has recently been growing more camelina for its potential as a biofuel and biolubricant. Plant scientists at the University of Idaho, Washington State University, and other institutions also are studying this emerging biodiesel.
File:US Navy 100422-N-XXXXS-001 The Navy celebrates Earth Day by showcasing a supersonic flight test of the Green Hornet, an F-A-18 Super Hornet strike fighter jet powered by a 50-50 biofuel blend.jpg|200px|thumb|left|A U.S. Navy F/A-18 Super Hornet flying at Naval Air Station Patuxent River using fuel made partly from C. sativa File:F-22 Raptor biofuel 18 March 2011.jpg|200px|thumb|A U.S. Air Force F-22 Raptor over Edwards Air Force Base fueled by a 50/50 blend of JP-8 jet fuel and biofuel made from C. sativa
Studies have shown camelina-based jet fuel reduces net carbon emissions by about 80%. The United States Navy chose it as the feedstock for their first test of aviation biofuel, and successfully operated a static F414 engine in October 2009 at Naval Air Station Patuxent River, Maryland. The United States Air Force also began testing the fuel in its aircraft in March 2010. On 22 April 2010, the U.S. Navy observed Earth Day by conducting a flight test lasting about 45 minutes at Naval Air Station Patuxent River of an F/A-18 Super Hornet – nicknamed the "Green Hornet" – powered by a 50/50 blend of conventional jet fuel and a biofuel made from camelina; the flight was the first of a planned 15 test flights totaling about 23 flight-hours, scheduled for completion by mid-June 2010. In March 2011, the U.S. Air Force successfully tested a 50/50 mix of jet propellant 8 and camelina-derived biofuel in an F-22 Raptor, achieving a speed of Mach 1.5 on 18 March 2011. On 4 September 2011, the U.S. Navy's Blue Angels flight demonstration squadron used a 50/50 blend of camelina biofuel and jet fuel at the Naval Air Station Patuxent River Air Expo, the first time an entire military aviation unit flew on a biofuel mix. In 2011, the U.S. Navy announced plans to deploy a "Great Green Fleet," a carrier battle group powered entirely by nonfossil fuels, by 2016.
Continental Airlines, was the first commercial airline to test a 50:50 blend of bio-derived "green jet" fuel and traditional jet fuel in the first demonstration of the use of sustainable biofuel to power a commercial aircraft in North America.. The demonstration flight, conducted in partnership with Boeing, GE Aviation/CFM International, and Honeywell's UOP, marked the first sustainable biofuel demonstration flight by a commercial carrier using a two-engine aircraft: a Boeing 737-800 equipped with CFM International CFM56-7B engines. Continental ran the blend in Engine No. 2. During the two-hour test flight, Continental pilots engaged the aircraft in a number of normal and non-normal flight maneuvers, such as mid-flight engine shutdown and restart, and power accelerations and decelerations. A Continental engineer recorded flight data on board. KLM, the Royal Dutch Airline, was the first airline to operate a passenger-carrying flight using biofuel. On 23 November 2009, a Boeing 747 flew, carrying a limited number of passengers, with one of its four engines running on a 50/50 mix of biofuel and kerosene.
In June 2011, a Gulfstream G450 became the first business jet to cross the Atlantic Ocean using a blend of 50/50 biofuel developed by Honeywell derived from camelina and petroleum-based jet fuel.
The Dutch biofarming company Waterland International and a Japanese federation of farmers made an agreement in March 2012 to plant and grow camelina on 2000 to 3000 ha in Fukushima Prefecture. The seeds were to be used to produce biofuel, that could be used to produce electricity. According to director William Nolten, the region had a big potential for the production of clean energy. Some 800.000 ha in the region could not be used to produce food anymore, and after the nuclear disaster because of fears for contamination, the Japanese people refused to buy food produced in the region, anyway. Experiments would be done to find out whether camelina was capable of extracting radioactive caesium from the soil. An experiment with sunflowers had no success.
A partnership of Chevron and Bunge companies purchased an Argentina camelina sativa seed producer, Chacraservicios, in July 2023 to contribute to their bio-diesel production.

Animal feed

Camelina has been approved as a cattle feed supplement in the US, as well as an ingredient in broiler chicken feed and laying hen feed. Camelina meal, the byproduct of camelina when the oil has been extracted, has a significant crude protein content. "Feeding camelina meal significantly increased omega-3 concentration in both breast and thigh meat compared to control group." Medical research indicates a diet abundant in omega-3 fatty acids is beneficial to human health. Camelina oil has also been investigated as a sustainable lipid source to fully replace fish oil in diets for farmed Atlantic salmon, rainbow trout, and Atlantic cod. However, various antinutritional factors are present in camelina oil meal and can affect its use as livestock feed. The use of camelina meal for animal feed is only limited by the presence of glucosinolates.
The Canadian Food Inspection Agency has approved feeding cold-pressed non-solvent extracted Camelina meal to broiler chickens at up to 12% inclusion.

Use in Canada

Approximately 50,000 acres are currently cultivated in Canada. The Camelina Association of Canada estimates that 1 to 3 million acres could be planted in the future. Several factors challenge the spread of camelina cultivation in Canada: it does not have government crop classification, and camelina meal is not approved as livestock feed. In early 2010, Health Canada approved camelina oil as a food in Canada.
In 2014, camelina was included for the first time in Canada's Advance Payments Program, commonly known as the cash advance program.