Corneal transplantation


Corneal transplantation, also known as corneal grafting, is a surgical procedure where a damaged or diseased cornea is replaced by donated corneal tissue. When the entire cornea is replaced it is known as penetrating keratoplasty and when only part of the cornea is replaced it is known as lamellar keratoplasty. Keratoplasty simply means surgery to the cornea. The graft is taken from a recently deceased individual with no known diseases or other factors that may affect the chance of survival of the donated tissue or the health of the recipient.
The cornea is the transparent front part of the eye that covers the iris, pupil and anterior chamber. The surgical procedure is performed by ophthalmologists, physicians who specialize in eyes, and is often done on an outpatient basis. Donors can be of any age, as is shown in the case of Janis Babson, who donated her eyes after dying at the age of 10. Corneal transplantation is performed when medicines, keratoconus conservative surgery and cross-linking can no longer heal the cornea.
This surgical procedure usually treats corneal blindness, with success rates of at least 41% as of 2021.

Medical uses

Indications include the following:
  • Optical: To improve visual acuity by replacing the opaque or distorted host tissue by clear healthy donor tissue. The most common indication in this category is pseudophakic bullous keratopathy, followed by keratoconus, corneal degeneration, keratoglobus and dystrophy, as well as scarring due to keratitis and trauma.
  • Tectonic/reconstructive: To preserve corneal anatomy and integrity in patients with stromal thinning and descemetoceles, or to reconstruct the anatomy of the eye, e.g. after corneal perforation.
  • Therapeutic: To remove inflamed corneal tissue unresponsive to treatment by antibiotics or anti-virals.
  • Cosmetic: To improve the appearance of patients with corneal scars that have given a whitish or opaque hue to the cornea.

    Risks

The risks are similar to other intraocular procedures, but additionally include graft rejection, detachment or displacement of lamellar transplants and primary graft failure. Use of immunosuppressants including cyclosporine A, tacrolimus, mycophenolate mofetil, sirolimus, and leflunomide to prevent graft rejection is increasing but there is insufficient evidence to ascertain which immunosuppressant is better. In a Cochrane review which included low to moderate quality evidence, adverse effects were found to be common with systemic mycophenolate mofetil, but less common with topical cyclosporine A or tacrolimus.
There is also a risk of infection. Since the cornea has no blood vessels it heals much more slowly than a cut on the skin. While the wound is healing, it is possible that it might become infected by various microorganisms. This risk is minimized by antibiotic prophylaxis.
There is a risk of cornea rejection, which occurs in about 10% of cases. Graft failure can occur at any time after the cornea has been transplanted, even years or decades later. The causes can vary, though it is usually due to new injury or illness. Treatment can be either medical or surgical, depending on the individual case. An early, technical cause of failure may be an excessively tight stitch cheesewiring through the sclera.
Infectious disease transmission through corneal transplantation is exceedingly rare. All corneal grafts are screened for the presence of viruses such as HIV or hepatitis through antibody or nucleic acid testing, and there has never been a reported case of HIV transmission through corneal transplant surgery. Prior to the development of reliable HIV testing, many countries instituted bans on corneal donation by gay men. For example, on 20 May 1994, the United States banned corneal donation by any man who has had sex with another man in the preceding 5 years, even if all HIV testing is negative.

Procedure

On the day of the surgery, the patient arrives to either a hospital or an outpatient surgery center, where the procedure will be performed. The patient is given a brief physical examination by the surgical team and is taken to the operating room. In the operating room, the patient lies down on an operating table and is either given general anesthesia, or local anesthesia and a sedative.
With anesthesia induced, the surgical team prepares the eye to be operated on and drapes the face around the eye. An eyelid speculum is placed to keep the lids open, and some lubrication is placed on the eye to prevent drying. In children, a metal ring is stitched to the sclera which will provide support of the sclera during the procedure.

Pre-operative examination

In most instances, the person will meet with their ophthalmologist for an examination in the weeks or months preceding the surgery. During the exam, the ophthalmologist will examine the eye and diagnose the condition. The doctor will then discuss the condition with the patient, including the different treatment options available. The doctor will also discuss the risks and benefits of the various options. If the patient elects to proceed with the surgery, the doctor will have the patient sign an informed consent form. The doctor might also perform a physical examination and order lab tests, such as blood work, X-rays, or an EKG.
The surgery date and time will also be set, and the patient will be told where the surgery will take place. Within the United States, the supply of corneas is sufficient to meet the demand for surgery and research purposes. Therefore, unlike other tissues for transplantation, delays and shortages are not usually an issue.

Penetrating keratoplasty

A trephine, which removes a circular disc of cornea, is used by the surgeon to cut the donor cornea. A second trephine is then used to remove a similar-sized portion of the patient's cornea. The donor tissue is then sewn in place with sutures.
Antibiotic eyedrops are placed, the eye is patched, and the patient is taken to a recovery area while the effects of the anesthesia wear off. The patient typically goes home following this and sees the doctor the following day for the first postoperative appointment.

Lamellar keratoplasty

Lamellar keratoplasty encompasses several techniques which selectively replace diseased layers of the cornea while leaving healthy layers in place. The chief advantage is improved tectonic integrity of the eye. Disadvantages include the technically challenging nature of these procedures, which replace portions of a structure only 500 μm thick, and reduced optical performance of the donor/recipient interface compared to full-thickness keratoplasty.

Deep anterior lamellar keratoplasty

In this procedure, the anterior layers of the central cornea are removed and replaced with donor tissue. Endothelial cells and the Descemets membrane are left in place. This technique is used in cases of anterior corneal opacifications, scars, and ectatic diseases such as keratoconus.

Corneal Allogenic Intrastromal Ring Segments (CAIRS)

Corneal Allogenic Intrastromal Ring Segment Keratoplasty is a modern surgical technique used in the treatment of keratoconus. It involves implanting finely shaped pieces of donor corneal tissue into the corneal stroma to reinforce and reshape the weakened, ectatic cornea, thereby improving both corneal structure and visual clarity. Because CAIRS uses biological graft material and has demonstrated strong outcomes with a favourable safety profile, it is formally recognised as a corneal transplantation procedure by health funding authorities in Australia, the United Kingdom, Japan, Germany, Brazil, the Netherlands, and a number of other countries.
In contrast to traditional synthetic intrastromal corneal ring segments made from materials such as PMMA, CAIRS keratoplasty uses preserved allogeneic corneal tissue. This biological compatibility reduces the likelihood of complications sometimes seen with non-organic implants, including extrusion, infection, or chronic foreign body reaction.
The CAIRS technique was pioneered by Dr Soosan Jacob, who first introduced it in 2018 through a large case series published in the Journal of Refractive Surgery. One of its key strengths is its suitability for corneas with irregular or decentered cones. The donor segments can be individually designed to achieve targeted corneal flattening and astigmatism improvement. Subsequent clinical studies have supported the effectiveness and stability of CAIRS across various forms of corneal ectasia, with promising results maintained for up to five years. Dr Jacob also holds patents for specialised trephination and implantation instruments, further standardising and refining the procedure.
The high degree of customisation available with CAIRS keratoplasty is one of its greatest clinical advantages, enabling surgeons to tailor treatment to the patient's specific topography and visual needs. Some commercial providers have introduced branded versions of pre-prepared donor segments, such as "CTAK". While the branding differs, these procedures are still CAIRS keratoplasty; the trademarked names apply only to the tissue supply or preparation system rather than the surgical concept itself.
To support surgeons in planning CAIRS procedures, Dr Brendan Cronin and Dr David Gunn, keratoconus specialists based in Brisbane, Australia, have developed a free web-based planning resource: www.cairsplan.com. This platform provides guidance and planning tools to help optimize surgical outcomes and expand access to this innovative approach.

Endothelial keratoplasty

Endothelial keratoplasty replaces the patient's endothelium with a transplanted disc of posterior stroma/Descemets/endothelium or Descemets/endothelium.
This relatively new procedure has revolutionized treatment of disorders of the innermost layer of the cornea. Unlike a full-thickness corneal transplant, the surgery can be performed with one or no sutures. Patients may recover functional vision in days to weeks, as opposed to up to a year with full thickness transplants. However, an Australian study has shown that despite its benefits, the loss of endothelial cells that maintain transparency is much higher in DSEK compared to a full-thickness corneal transplant. The reason may be greater tissue manipulation during surgery, the study concluded.
During surgery the patient's corneal endothelium is removed and replaced with donor tissue. With DSEK, the donor includes a thin layer of stroma, as well as endothelium, and is commonly 100–150 μm thick. With DMEK, only the endothelium is transplanted. In the immediate postoperative period the donor tissue is held in position with an air bubble placed inside the eye. The tissue self-adheres in a short period and the air is adsorbed into the surrounding tissues.
Complications include displacement of the donor tissue requiring repositioning. This is more common with DMEK than DSEK. Folds in the donor tissue may reduce the quality of vision, requiring repair. Rejection of the donor tissue may require repeating the procedure. Gradual reduction in endothelial cell density over time can lead to loss of clarity and require repeating the procedure.
Patients with endothelial transplants frequently achieve best corrected vision in the 20/30 to 20/40 range, although some reach 20/20. Optical irregularity at the graft/host interface may limit vision below 20/20.