Extraspecial group
In group theory, a branch of abstract algebra, extraspecial groups are analogues of the Heisenberg group over finite fields whose size is a prime. For each prime p and positive integer n there are exactly two extraspecial groups of order p1+2n. Extraspecial groups often occur in centralizers of involutions. The ordinary character theory of extraspecial groups is well understood.
Definition
Recall that a finite group is called a p-group if its order is a power of a prime p.A p-group G is called extraspecial if its center Z is cyclic of order p, and the quotient G/''Z is a non-trivial elementary abelian p''-group.
Extraspecial groups of order p1+2n are often denoted by the symbol p1+2n. For example, 21+24 stands for an extraspecial group of order 225.
Classification
Every extraspecial p-group has order p1+2n for some positive integer n, and conversely for each such number there are exactly two extraspecial groups up to isomorphism. A central product of two extraspecial p-groups is extraspecial, and every extraspecial group can be written as a central product of extraspecial groups of order p3. This reduces the classification of extraspecial groups to that of extraspecial groups of order p3. The classification is often presented differently in the two cases p odd and p = 2, but a uniform presentation is also possible.''p'' odd
There are two extraspecial groups of order p3, which for p odd are given by- The group of triangular 3x3 matrices over the field with p elements, with 1's on the diagonal. This group has exponent p for p odd.
- The semidirect product of a cyclic group of order p2 by a cyclic group of order p acting non-trivially on it. This group has exponent p2.
- The central product of n extraspecial groups of order p3, all of exponent p. This extraspecial group also has exponent p.
- The central product of n extraspecial groups of order p3, at least one of exponent p2. This extraspecial group has exponent p2.
''p'' = 2
There are two extraspecial groups of order 8 = 23, which are given by- The dihedral group D8 of order 8, which can also be given by either of the two constructions in the section above for p = 2. This group has 2 elements of order 4.
- The quaternion group Q8 of order 8, which has 6 elements of order 4.
- The central product of n extraspecial groups of order 8, an odd number of which are quaternion groups. The corresponding quadratic form has Arf invariant 1.
- The central product of n extraspecial groups of order 8, an even number of which are quaternion groups. The corresponding quadratic form has Arf invariant 0.
All ''p''
A uniform presentation of the extraspecial groups of order p1+2n can be given as follows. Define the two groups:Character theory
If G is an extraspecial group of order p1+2n, then its irreducible complex representations are given as follows:- There are exactly p2n irreducible representations of dimension 1. The center Z acts trivially, and the representations just correspond to the representations of the abelian group G/''Z.
- There are exactly p'' − 1 irreducible representations of dimension pn. There is one of these for each non-trivial character χ of the center, on which the center acts as multiplication by χ. The character values are given by pnχ on Z, and 0 for elements not in Z.
- If a nonabelian p-group G has less than p2 − p nonlinear irreducible characters of minimal degree, it is extraspecial.
Examples