Curiosity


Curiosity is a quality related to inquisitive thinking, such as exploration, investigation, and learning, evident in humans and other animals. Curiosity helps human development, from which derives the process of learning and desire to acquire knowledge and skill.
The term curiosity can also denote the behavior, characteristic, or emotion of being curious, in regard to the desire to gain knowledge or information. Curiosity as a behavior and emotion is the driving force behind human development, such as progress in science, language, and industry.
Curiosity can be considered to be an evolutionary adaptation based on an organism's ability to learn. Certain curious animals will pursue information in order to adapt to their surrounding and learn how things work. This behavior is termed neophilia, the love of new things. For animals, a fear of the unknown or the new, neophobia, is much more common, especially later in life.

Causes

Many species display curiosity including apes, cats, and rodents. It is common in human beings at all ages from infancy through adulthood. Research has shown that curiosity is not a fixed attribute amongst humans but rather can be nurtured and developed.
Early definitions of curiosity call it a motivated desire for information. This motivational desire has been said to stem from a passion or an appetite for knowledge, information, and understanding.
Traditional ideas of curiosity have expanded to consider the difference between perceptual curiosity, as the innate exploratory behavior that is present in all animals, and epistemic curiosity, as the desire for knowledge that is specifically attributed to humans.
Daniel Berlyne recognized three classes of variables playing a role in evoking curiosity: psychophysical variables, ecological variables, and collative variables. Psychophysical variables correspond to physical intensity, ecological variables to motivational significance and task relevance. Collative variables involve a comparison between different stimuli or features, which may be actually perceived or which may be recalled from memory. Berlyne mentioned four collative variables: novelty, complexity, uncertainty, and conflict. Additionally, he considered three variables supplementary to novelty: change, surprisingness, and incongruity. Finally, curiosity may not only be aroused by the perception of some stimulus associated with the aforementioned variables, but also by a lack of stimulation, out of "boredom".

Curiosity-driven behavior

Curiosity-driven behavior is often defined as behavior through which knowledge is gained – a form of exploratory behavior. It therefore encompasses all behaviors that provide access to or increase sensory information. Berlyne divided curiosity-driven behavior into three categories: orienting responses, locomotor exploration, and investigatory responses or investigatory manipulation. Previously, Berlyne suggested that curiosity also includes verbal activities, such as asking questions, and symbolic activities, consisting of internally fueled mental processes such as thinking.

Theories

Like other desires and need-states that take on an appetitive quality, curiosity is linked with exploratory behavior and experiences of reward. Curiosity can be described in terms of positive emotions and acquiring knowledge; when one's curiosity has been aroused it is considered inherently rewarding and pleasurable. Discovering new information may also be rewarding because it can help reduce undesirable states of uncertainty rather than stimulating interest. Theories have arisen in attempts to further understand this need to rectify states of uncertainty and the desire to participate in pleasurable experiences of exploratory behaviors.

Curiosity-drive theory

Curiosity-drive theory posits undesirable experiences of "uncertainty" and "ambiguity". The reduction of these unpleasant feelings is rewarding. This theory suggests that people desire coherence and understanding in their thought processes. When this coherence is disrupted by something that is unfamiliar, uncertain, or ambiguous, an individual's curiosity-drive causes them to collect information and knowledge of the unfamiliar to restore coherent thought processes. This theory suggests that curiosity is developed out of the desire to make sense of unfamiliar aspects of one's environment through exploratory behaviors. Once understanding of the unfamiliar has been achieved and coherence has been restored, these behaviors and desires subside.
Derivations of curiosity-drive theory differ on whether curiosity is a primary or secondary drive and if this curiosity-drive originates due to one's need to make sense of and regulate one's environment or if it is caused by an external stimulus. Causes can range from basic needs that need to be satisfied to needs in fear-induced situations. Each of these derived theories state that whether the need is primary or secondary, curiosity develops from experiences that create a sensation of uncertainty or perceived unpleasantness. Curiosity then acts to dispel this uncertainty. By exhibiting curious and exploratory behavior, one is able to gain knowledge of the unfamiliar and thus reduce the state of uncertainty or unpleasantness. This theory, however, does not address the idea that curiosity can often be displayed even in the absence of new or unfamiliar situations. This type of exploratory behavior, too, is common in many species. A human toddler, if bored in his current situation devoid of arousing stimuli, will walk about until he finds something interesting. The observation of curiosity even in the absence of novel stimuli pinpoints one of the major shortcomings in the curiosity-drive model.

Optimal-arousal theory

Optimal-arousal theory developed out of the need to explain this desire to seek out opportunities to engage in exploratory behaviors without the presence of uncertain or ambiguous situations. Optimal-arousal suggests that one can be motivated to maintain a pleasurable sense of arousal through such exploratory behaviors.
When a stimulus is encountered that is associated with complexity, uncertainty, conflict, or novelty, this increases arousal above the optimal point, and exploratory behavior is employed to learn about that stimulus and thereby reduce arousal again. In contrast, if the environment is boring and lacks excitement, arousal is reduced below the optimal point and exploratory behavior is employed to increase information input and stimulation, and thereby increasing arousal again. This theory addresses both curiosity elicited by uncertain or unfamiliar situations and curiosity elicited in the absence of such situations.

Cognitive-consistency theory

theories assume that "when two or more simultaneously active cognitive structures are logically inconsistent, arousal is increased, which activates processes with the expected consequence of increasing consistency and decreasing arousal." Similar to optimal-arousal theory, cognitive-consistency theory suggests that there is a tendency to maintain arousal at a preferred, or expected, level, but it also explicitly links the amount of arousal to the amount of experienced inconsistency between an expected situation and the actually perceived situation. When this inconsistency is small, exploratory behavior triggered by curiosity is employed to gather information with which expectancy can be updated through learning to match perception, thereby reducing inconsistency.
This approach associates curiosity with aggression and fear. If the inconsistency is larger, fear or aggressive behavior may be employed to alter the perception in order to make it match expectancy, depending on the size of the inconsistency as well as the specific context. Aggressive behavior alters perception by forcefully manipulating it into matching the expected situation, while fear prompts flight, which removes the inconsistent stimulus from the perceptual field and thus resolves the inconsistency.

Integration of the reward pathway into theory

Taking into account the shortcomings of both curiosity-drive and optimal-arousal theories, attempts have been made to integrate neurobiological aspects of reward, wanting, and pleasure into a more comprehensive theory for curiosity. Research suggests that desiring new information involves mesolimbic pathways of the brain that dopamine activation. The use of these pathways, and dopamine activation, may be how the brain assigns value to new information and interprets this as reward. This theory from neurobiology can supplement curiosity-drive theory by explaining the motivation of exploratory behavior.

Role of neurological aspects and structures

Although curiosity is widely regarded, its root causes are largely empirically unknown. However, some studies have provided insight into the neurological mechanisms that make up what is known as the reward pathway which may influence characteristics associated with curiosity, such as learning, memory, and motivation. Due to the complex nature of curiosity, research that focuses on specific neural processes with these characteristics can help us understand of the phenomenon of curiosity as a whole. The following are descriptions of characteristics of curiosity and their links to neurological aspects that are essential in creating exploratory behaviors:

Motivation and reward

The drive to learn new information or perform some action may be prompted by the anticipation of reward. So what we learn about motivation and reward may help us to understand curiosity.
Reward is defined as the positive reinforcement of an action, reinforcement that encourages a particular behavior by means of the emotional sensations of relief, pleasure, and satisfaction that correlate with happiness. Many areas in the brain process reward and come together to form what is called the reward pathway. In this pathway many neurotransmitters play a role in the activation of the reward sensation, including dopamine, serotonin, and opioids.
Dopamine is linked to curiosity, as it assigns and retains reward values of information gained. Research suggests and the stimulus is unfamiliar, compared to activation of dopamine when stimulus is familiar.