Thermodynamic equilibrium
Thermodynamic equilibrium is a notion of thermodynamics with axiomatic status referring to an internal state of a single thermodynamic system, or a relation between several thermodynamic systems connected by more or less permeable or impermeable walls.
In thermodynamic equilibrium, there are no net macroscopic flows of mass nor of energy within a system or between systems. In a system that is in its own state of internal thermodynamic equilibrium, not only is there an absence of macroscopic change, but there is an "absence of any tendency toward change on a macroscopic scale."
Systems in mutual thermodynamic equilibrium are simultaneously in mutual thermal, mechanical, chemical, and radiative equilibria. Systems can be in one kind of mutual equilibrium, while not in others. In thermodynamic equilibrium, all kinds of equilibrium hold at once and indefinitely, unless disturbed by a thermodynamic operation. In a macroscopic equilibrium, perfectly or almost perfectly balanced microscopic exchanges occur; this is the physical explanation of the notion of macroscopic equilibrium.
A thermodynamic system in a state of internal thermodynamic equilibrium has a spatially uniform temperature. Its intensive properties, other than temperature, may be driven to spatial inhomogeneity by an unchanging long-range force field imposed on it by its surroundings.
In systems that are at a state of non-equilibrium there are, by contrast, net flows of matter or energy. If such changes can be triggered to occur in a system in which they are not already occurring, the system is said to be in a "meta-stable equilibrium".
Though not a widely named "law," it is an axiom of thermodynamics that there exist states of thermodynamic equilibrium.
The second law of thermodynamics states that, in an isolated system, when partitions are removed between equilibrated subsystems in different states, the system spontaneously equilibrates, accompanied by an increase in the system's entropy.
Overview
Classical thermodynamics deals with states of dynamic equilibrium. The state of a system at thermodynamic equilibrium is the one for which some thermodynamic potential is minimized, or for which the entropy is maximized, for specified conditions. One such potential is the Helmholtz free energy, for a closed system at constant volume and temperature :Another potential, the Gibbs free energy, is minimized at thermodynamic equilibrium in a closed system at constant temperature and pressure, both controlled by the surroundings:
where T denotes the absolute thermodynamic temperature, P the pressure, S the entropy, V the volume, and U the internal energy of the system. In other words, is a necessary condition for chemical equilibrium under these conditions.
Thermodynamic equilibrium is the unique stable stationary state that is approached or eventually reached as the system interacts with its surroundings over a long time. The above-mentioned potentials are mathematically constructed to be the thermodynamic quantities that are minimized under the particular conditions in the specified surroundings.
Conditions
- For a completely isolated system, S is maximum at thermodynamic equilibrium.
- For a closed system at controlled constant temperature and volume, A is minimum at thermodynamic equilibrium.
- For a closed system at controlled constant temperature and pressure without an applied voltage, G is minimum at thermodynamic equilibrium.
- Two systems are in thermal equilibrium when their temperatures are the same.
- Two systems are in mechanical equilibrium when their pressures are the same.
- Two systems are in diffusive equilibrium when their chemical potentials are the same.
- All forces are balanced and there is no significant external driving force.
Relation of exchange equilibrium between systems
A contact equilibrium may be regarded also as an exchange equilibrium. There is a zero balance of rate of transfer of some quantity between the two systems in contact equilibrium. For example, for a wall permeable only to heat, the rates of diffusion of internal energy as heat between the two systems are equal and opposite. An adiabatic wall between the two systems is 'permeable' only to energy transferred as work; at mechanical equilibrium the rates of transfer of energy as work between them are equal and opposite. If the wall is a simple wall, then the rates of transfer of volume across it are also equal and opposite; and the pressures on either side of it are equal. If the adiabatic wall is more complicated, with a sort of leverage, having an area-ratio, then the pressures of the two systems in exchange equilibrium are in the inverse ratio of the volume exchange ratio; this keeps the zero balance of rates of transfer as work.
A radiative exchange can occur between two otherwise separate systems. Radiative exchange equilibrium prevails when the two systems have the same temperature.
Thermodynamic state of internal equilibrium of a system
A collection of matter may be entirely isolated from its surroundings. If it has been left undisturbed for an indefinitely long time, classical thermodynamics postulates that it is in a state in which no changes occur within it, and there are no flows within it. This is a thermodynamic state of internal equilibrium.Such states are a principal concern in what is known as classical or equilibrium thermodynamics, for they are the only states of the system that are regarded as well defined in that subject. A system in contact equilibrium with another system can by a thermodynamic operation be isolated, and upon the event of isolation, no change occurs in it. A system in a relation of contact equilibrium with another system may thus also be regarded as being in its own state of internal thermodynamic equilibrium.
Multiple contact equilibrium
The thermodynamic formalism allows that a system may have contact with several other systems at once, which may or may not also have mutual contact, the contacts having respectively different permeabilities. If these systems are all jointly isolated from the rest of the world those of them that are in contact then reach respective contact equilibria with one another.If several systems are free of adiabatic walls between each other, but are jointly isolated from the rest of the world, then they reach a state of multiple contact equilibrium, and they have a common temperature, a total internal energy, and a total entropy. Amongst intensive variables, this is a unique property of temperature. It holds even in the presence of long-range forces. For example, in a system in thermodynamic equilibrium in a vertical gravitational field, the pressure on the top wall is less than that on the bottom wall, but the temperature is the same everywhere.
A thermodynamic operation may occur as an event restricted to the walls that are within the surroundings, directly affecting neither the walls of contact of the system of interest with its surroundings, nor its interior, and occurring within a definitely limited time. For example, an immovable adiabatic wall may be placed or removed within the surroundings. Consequent upon such an operation restricted to the surroundings, the system may be for a time driven away from its own initial internal state of thermodynamic equilibrium. Then, according to the second law of thermodynamics, the whole undergoes changes and eventually reaches a new and final equilibrium with the surroundings. Following Planck, this consequent train of events is called a natural thermodynamic process. It is allowed in equilibrium thermodynamics just because the initial and final states are of thermodynamic equilibrium, even though during the process there is transient departure from thermodynamic equilibrium, when neither the system nor its surroundings are in well defined states of internal equilibrium. A natural process proceeds at a finite rate for the main part of its course. It is thereby radically different from a fictive quasi-static 'process' that proceeds infinitely slowly throughout its course, and is fictively 'reversible'. Classical thermodynamics allows that even though a process may take a very long time to settle to thermodynamic equilibrium, if the main part of its course is at a finite rate, then it is considered to be natural, and to be subject to the second law of thermodynamics, and thereby irreversible. Engineered machines and artificial devices and manipulations are permitted within the surroundings. The allowance of such operations and devices in the surroundings but not in the system is the reason why Kelvin in one of his statements of the second law of thermodynamics spoke of "inanimate" agency; a system in thermodynamic equilibrium is inanimate.
Otherwise, a thermodynamic operation may directly affect a wall of the system.
It is often convenient to suppose that some of the surrounding subsystems are so much larger than the system that the process can affect the intensive variables only of the surrounding subsystems, and they are then called reservoirs for relevant intensive variables.