Inborn errors of metabolism
Inborn errors of metabolism form a large class of genetic diseases involving congenital disorders of enzyme activities. The majority are due to defects of single genes that code for enzymes that facilitate conversion of various substances into others. In most of the disorders, problems arise due to accumulation of substances which are toxic or interfere with normal function, or due to the effects of reduced ability to synthesize essential compounds. Inborn errors of metabolism are often referred to as congenital metabolic diseases or inherited metabolic disorders. Another term used to describe these disorders is "enzymopathies". This term was created following the study of biodynamic enzymology, a science based on the study of the enzymes and their products. Finally, inborn errors of metabolism were studied for the first time by British physician Archibald Garrod, in 1908. He is known for work that prefigured the "one gene–one enzyme" hypothesis, based on his studies on the nature and inheritance of alkaptonuria. His seminal text, Inborn Errors of Metabolism, was published in 1923.
Classification of metabolic diseases
Traditionally the inherited metabolic diseases were classified as disorders of carbohydrate metabolism, amino acid metabolism, organic acid metabolism, or lysosomal storage diseases. In recent decades, hundreds of new inherited disorders of metabolism have been discovered and the categories have proliferated. Following are some of the major classes of congenital metabolic diseases, with prominent examples of each class.Signs and symptoms
Because of the enormous number of these diseases and the numerous systems negatively impacted, nearly every "presenting complaint" to a healthcare provider may have a congenital metabolic disease as a possible cause, especially in childhood and adolescence. The following are examples of potential manifestations affecting each of the major organ systems.Diagnostic
Dozens of congenital metabolic diseases are now detectable by newborn screening tests, especially expanded testing using mass spectrometry. Gas chromatography–mass spectrometry-based technology with an integrated analytics system has now made it possible to test a newborn for over 100 mm genetic metabolic disorders. Because of the multiplicity of conditions, many different diagnostic tests are used for screening. An abnormal result is often followed by a subsequent "definitive test" to confirm the suspected diagnosis.Common screening tests used in the last sixty years:
- Ferric chloride test
- Ninhydrin paper chromatography
- Guthrie test The dried blood spot can be used for multianalyte testing using Tandem Mass Spectrometry. This given an indication for a disorder. The same has to be further confirmed by enzyme assays, IEX-Ninhydrin, GC/MS or DNA Testing.
- Quantitative measurement of amino acids in plasma and urine
- IEX-Ninhydrin post-column derivitization liquid ion chromatography
- Urine organic acid analysis by gas chromatography–mass spectrometry
- Plasma acylcarnitine analysis by mass spectrometry
- Urine purine and pyrimidine analysis by gas chromatography-mass spectrometry
- Tissue biopsy: liver, muscle, brain, bone marrow
- Skin biopsy and fibroblast cultivation for specific enzyme testing
- Specific DNA testing