Space suit


A space suit is an environmental suit used for protection from the harsh environment of outer space, mainly from its vacuum as a highly specialized pressure suit, but also its temperature extremes, as well as radiation and micrometeoroids. Basic space suits are worn as a safety precaution inside spacecrafts in case of loss of cabin pressure. For extravehicular activity more complex space suits are worn, featuring a portable life support system.
Pressure suits are in general needed at low pressure environments above the Armstrong limit, at around above Earth. Space suits augment pressure suits with complex system of equipment and environmental systems designed to keep the wearer comfortable, and to minimize the effort required to bend the limbs, resisting a soft pressure garment's natural tendency to stiffen against the vacuum. A self-contained oxygen supply and environmental control system is frequently employed to allow complete freedom of movement, independent of the spacecraft.
Three types of space suits exist for different purposes: IVA, EVA, and IEVA. IVA suits are meant to be worn inside a pressurized spacecraft, and are therefore lighter and more comfortable. IEVA suits are meant for use inside and outside the spacecraft, such as the Gemini G4C suit. They include more protection from the harsh conditions of space, such as protection from micrometeoroids and extreme temperature change. EVA suits, such as the EMU, are used outside spacecraft, for either planetary exploration or spacewalks. They must protect the wearer against all conditions of space, as well as provide mobility and functionality.
The first full-pressure suits for use at extreme altitudes were designed by individual inventors as early as the 1930s. The first space suit worn by a human in space was the Soviet SK-1 suit worn by Yuri Gagarin in 1961. Since then space suits have been worn beside in Earth orbit, en-route and on the surface of the Moon.

Requirements

A space suit must perform several functions to allow its occupant to work safely and comfortably, inside or outside a spacecraft. It must provide:
  • A stable internal pressure. This can be less than Earth's atmosphere, as there is usually no need for the space suit to carry nitrogen. Lower pressure allows for greater mobility, but requires the suit occupant to breathe pure oxygen for a time before going into this lower pressure, to avoid decompression sickness.
  • Mobility. Movement is typically opposed by the pressure of the suit; mobility is achieved by careful joint design. See the Design concepts section.
  • Supply of breathable oxygen and elimination of carbon dioxide; these gases are exchanged with the spacecraft or a Portable Life Support System
  • Temperature regulation. Unlike on Earth, where heat can be transferred by convection to the atmosphere, in space, heat can be lost only by thermal radiation or by conduction to objects in physical contact with the exterior of the suit. Since the temperature on the outside of the suit varies greatly between sunlight and shadow, the suit is heavily insulated, and air temperature is maintained at a comfortable level.
  • A communication system, with external electrical connection to the spacecraft or PLSS
  • Means of collecting and containing solid and liquid bodily waste

    Secondary requirements

Advanced suits better regulate the astronaut's temperature with a Liquid Cooling and Ventilation Garment in contact with the astronaut's skin, from which the heat is dumped into space through an external radiator in the PLSS.
Additional requirements for EVA include:
  • Shielding against ultraviolet radiation
  • Limited shielding against particle radiation
  • Means to maneuver, dock, release, and tether onto a spacecraft
  • Protection against small micrometeoroids, some traveling at up to 27,000 kilometers per hour, provided by a puncture-resistant Thermal Micrometeoroid Garment, which is the outermost layer of the suit. Experience has shown the greatest chance of exposure occurs near the gravitational field of a moon or planet, so these were first employed on the Apollo lunar EVA suits.
As part of astronautical hygiene control, a space suit is essential for extravehicular activity. The Apollo/Skylab A7L suit included eleven layers in all: an inner liner, a LCVG, a pressure bladder, a restraint layer, another liner, and a Thermal Micrometeoroid Garment consisting of five aluminized insulation layers and an external layer of white Ortho-Fabric. This space suit is capable of protecting the astronaut from temperatures ranging from to.
During exploration of the Moon or Mars, there will be the potential for lunar or Martian dust to be retained on the space suit. When the space suit is removed on return to the spacecraft, there will be the potential for the dust to contaminate surfaces and increase the risks of inhalation and skin exposure. Astronautical hygienists are testing materials with reduced dust retention times and the potential to control the dust exposure risks during planetary exploration. Novel ingress and egress approaches, such as suitports, are being explored as well.
In NASA space suits, communications are provided via a cap worn over the head, which includes earphones and a microphone. Due to the coloration of the version used for Apollo and Skylab, which resembled the coloration of the comic strip character Snoopy, these caps became known as "Snoopy caps".

Operating pressure

Generally, to supply enough oxygen for respiration, a space suit using pure oxygen must have a pressure of about, equal to the partial pressure of oxygen in the Earth's atmosphere at sea level, plus and water vapor pressure, both of which must be subtracted from the alveolar pressure to get alveolar oxygen partial pressure in 100% oxygen atmospheres, by the alveolar gas equation. The latter two figures add to, which is why many modern space suits do not use, but . In space suits that use 20.7 kPa, the astronaut gets only 20.7 kPa − 11.6 kPa = of oxygen, which is about the alveolar oxygen partial pressure attained at an altitude of above sea level. This is about 42% of normal partial pressure of oxygen at sea level, about the same as pressure in a commercial passenger jet aircraft, and is the realistic lower limit for safe ordinary space suit pressurization which allows reasonable capacity for work.

Oxygen prebreathing

When space suits below a specific operating pressure are used from craft that are pressurized to normal atmospheric pressure, this requires astronauts to "pre-breathe" before donning their suits and depressurizing in the air lock. This procedure purges the body of dissolved nitrogen, so as to avoid decompression sickness due to rapid depressurization from a nitrogen-containing atmosphere.
In the US space shuttle, cabin pressure was reduced from normal atmospheric to 70kPa for 24 hours before EVA, and after donning the suit, a pre-breathing period of 45 minutes on pure oxygen before decompressing to the EMU working pressure of 30kPa. In the ISS there is no cabin pressure reduction, instead a 4-hour oxygen pre-breathe at normal cabin pressure is used to desaturate nitrogen to an acceptable level. US studies show that a rapid decompression from 101kPa to 55kPa has an acceptable risk, and Russian studies show that direct decompression from 101kPa to 40kPa after 30 minutes of oxygen pre-breathing, roughly the time required for pre-EVA suit checks, is acceptable.

Physiological effects of unprotected space exposure

The human body can briefly survive the hard vacuum of space unprotected, despite contrary depictions in some popular science fiction. Consciousness is retained for up to 15 seconds as the effects of oxygen starvation set in. No snap freeze effect occurs because all heat must be lost through thermal radiation or the evaporation of liquids, and the blood does not boil because it remains pressurized within the body, but human flesh expands up to about twice its volume due to ebullism in such conditions, giving the visual effect of a body builder rather than an overfilled balloon.
In space, there are highly energized subatomic particles that can cause radiation damage by disrupting essential biological processes. Exposure to radiation can create problems via two methods: the particles can react with water in the human body to produce free radicals that break DNA molecules apart, or by directly breaking the DNA molecules.
Temperature in space can vary extremely depending on the exposure to radiant energy sources. Temperatures from solar radiation can reach up to, and in its absence, down to. Because of this, space suits must provide sufficient insulation and cooling for the conditions in which they will be used.
The vacuum environment of space has no pressure, so gases will expand and exposed liquids may evaporate. Some solids may sublimate. It is necessary to wear a suit that provides sufficient internal body pressure in space. The most immediate hazard is in attempting to hold one's breath during explosive decompression as the expansion of gas can damage the lungs by overexpansion rupture. These effects have been confirmed through various accidents. Human skin does not need to be protected from vacuum and is gas-tight by itself. It only needs to be mechanically restrained to retain its normal shape and the internal tissues to retain their volume. This can be accomplished with a tight-fitting elastic body suit and a helmet for containing breathing gases, known as a space activity suit.

Design concepts

A space suit should allow its user natural unencumbered movement. Nearly all designs try to maintain a constant volume no matter what movements the wearer makes. This is because mechanical work is needed to change the volume of a constant pressure system. If flexing a joint reduces the volume of the space suit, then the astronaut must do extra work every time they bend that joint, and they have to maintain a force to keep the joint bent. Even if this force is very small, it can be seriously fatiguing to constantly fight against one's suit. It also makes delicate movements very difficult. The work required to bend a joint is dictated by the formula
where Vi and Vf are respectively the initial and final volume of the joint, P is the pressure in the suit, and W is the resultant work. It is generally true that all suits are more mobile at lower pressures. However, because a minimum internal pressure is dictated by life support requirements, the only means of further reducing work is to minimize the change in volume.
All space suit designs try to minimize or eliminate this problem. The most common solution is to form the suit out of multiple layers. The bladder layer is a rubbery, airtight layer much like a balloon. The restraint layer goes outside the bladder, and provides a specific shape for the suit. Since the bladder layer is larger than the restraint layer, the restraint takes all of the stresses caused by the pressure inside the suit. Since the bladder is not under pressure, it will not "pop" like a balloon, even if punctured. The restraint layer is shaped in such a way that bending a joint causes pockets of fabric, called "gores", to open up on the outside of the joint, while folds called "convolutes" fold up on the inside of the joint. The gores make up for the volume lost on the inside of the joint, and keep the suit at a nearly constant volume. However, once the gores are opened all the way, the joint cannot be bent any further without a considerable amount of work.
In some Russian space suits, strips of cloth were wrapped tightly around the cosmonaut's arms and legs outside the space suit to stop the space suit from ballooning when in space.
The outermost layer of a space suit, the Thermal Micrometeoroid Garment, provides thermal insulation, protection from micrometeoroids, and shielding from harmful solar radiation.
There are four main conceptual approaches to suit design: