Dimictic lake
A dimictic lake is a body of freshwater whose difference in temperature between surface and bottom layers becomes negligible twice per year, allowing all strata of the lake's water to circulate vertically. All dimictic lakes are also considered holomictic, a category which includes all lakes which mix one or more times per year. During winter, dimictic lakes are covered by a layer of ice, creating a cold layer at the surface, a slightly warmer layer beneath the ice, and a still-warmer unfrozen bottom layer, while during summer, the same temperature-derived density differences separate the warm surface waters, from the colder bottom waters. In the spring and fall, these temperature differences briefly disappear, and the body of water overturns and circulates from top to bottom. Such lakes are common in mid-latitude regions with temperate climates.
Examples of dimictic lakes
- Lake Mendota
- Lake Superior
- Lake Simcoe
- Lake Opeongo
- Loch Lomond
- Lake Altaussee
Seasonal cycles of mixing and stratification
Spring overturn
Once the ice melts, the water column can be mixed by the wind. In large lakes the upper water column is often below 4 °C when the ice melts, so that spring is characterized by continued mixing by solar driven convection, until the water column reaches 4 °C. In small lakes, the period of spring overturn can be very brief, so that spring overturn is often much shorter than the fall overturn. As the upper water column warms past 4 °C a thermal stratification starts to develop.Summer stratification
During summer, the heat fluxes from the atmosphere to a lake warms the surface layers. This results in dimictic lakes have a strong thermal stratification, with a warm epilimnion separated from the cold hypolimnion by the metalimnion. Within the metalimnion there is a thermocline, usually defined as the region where temperature gradients exceed 1 °C/m. Due to the stable density gradient, mixing is inhibited within the thermocline, which reduces the vertical transport of dissolved oxygen. If a lake is eutrophic and has a high sediment oxygen demand, the hypolimnion in dimictic lakes can become hypoxic during summer stratification, as often seen in Lake Erie.During summer stratification, most lakes are observed to experience internal waves due to energy input from winds. If the lake is small, then the period of the internal seiche is well predicted by the Merian formulae. Long period internal waves in larger lakes can be influenced by Coriolis forces. This is expected to occur when the period of internal seiche becomes comparable to the local inertial period, which is 16.971 hours at a latitude of 45 °N In large lakes the observed frequencies of internal seiches are dominated by Poincaré waves and Kelvin waves.