Cyclic compound
A cyclic compound is a term for a compound in the field of chemistry in which one or more series of atoms in the compound is connected to form a ring. Rings may vary in size from three to many atoms, and include examples where all the atoms are carbon, none of the atoms are carbon, or where both carbon and non-carbon atoms are present. Depending on the ring size, the bond order of the individual links between ring atoms, and their arrangements within the rings, carbocyclic and heterocyclic compounds may be aromatic or non-aromatic; in the latter case, they may vary from being fully saturated to having varying numbers of multiple bonds between the ring atoms. Because of the tremendous diversity allowed, in combination, by the valences of common atoms and their ability to form rings, the number of possible cyclic structures, even of small size numbers in the many billions.
Adding to their complexity and number, closing of atoms into rings may lock particular atoms with distinct substitution such that stereochemistry and chirality of the compound results, including some manifestations that are unique to rings. As well, depending on ring size, the three-dimensional shapes of particular cyclic structures – typically rings of five atoms and larger – can vary and interconvert such that conformational isomerism is displayed. Indeed, the development of this important chemical concept arose historically in reference to cyclic compounds. Finally, cyclic compounds, because of the unique shapes, reactivities, properties, and bioactivities that they engender, are the majority of all molecules involved in the biochemistry, structure, and function of living organisms, and in man-made molecules such as drugs, pesticides, etc.
Structure and classification
A cyclic compound or ring compound is a compound in which at least some its atoms are connected to form a ring. Rings vary in size from three to many tens or even hundreds of atoms. Examples of ring compounds readily include cases where:- all the atoms are carbon,
- none of the atoms are carbon, or where
- both carbon and non-carbon atoms are present.
Moreover, the closing of atoms into rings may lock particular functional group–substituted atoms into place, resulting in stereochemistry and chirality being associated with the compound, including some manifestations that are unique to rings ; As well, depending on ring size, the three-dimensional shapes of particular cyclic structures — typically rings of five atoms and larger — can vary and interconvert such that conformational isomerism is displayed.
Carbocycles
The vast majority of cyclic compounds are organic, and of these, a significant and conceptually important portion are composed of rings made only of carbon atoms.Inorganic cyclic compounds
Inorganic atoms form cyclic compounds as well. Examples include sulfur, sulfur and nitrogen, silicon, silicon and oxygen, phosphorus and nitrogen, phosphorus and oxygen, boron and oxygen, boron and nitrogen, nitrogen. When carbon in benzene is "replaced" by other elements, e.g., as in borabenzene, silabenzene, germanabenzene, stannabenzene, and phosphorine, aromaticity is retained, and so aromatic inorganic cyclic compounds are also known and well-characterized.Heterocyclic compounds
A heterocyclic compound is a cyclic compound that has atoms of at least two different elements as members of its ring. Cyclic compounds that have both carbon and non-carbon atoms present are heterocyclic carbon compounds, and the name refers to inorganic cyclic compounds as well. Hantzsch–Widman nomenclature is recommended by the IUPAC for naming heterocycles, but many common names remain in regular use.Macrocycles
The term macrocycle is used for compounds having a rings of 8 or more atoms. Macrocycles may be fully carbocyclic, heterocyclic containing both carbon and non-carbon atoms, or non-carbon. Heterocycles with carbon in the rings may have limited non-carbon atoms in their rings, or be rich in non-carbon atoms and displaying significant symmetry. Macrocycles can access a number of stable conformations, with preference to reside in conformations that minimize transannular nonbonded interactions within the ring. Medium rings are the most strained, with between 9-13 strain energy, and analysis of factors important in the conformations of larger macrocycles can be modeled using medium ring conformations. Conformational analysis of odd-membered rings suggests they tend to reside in less symmetrical forms with smaller energy differences between stable conformations.File:Macrocycles 2revEnglUse.jpg|thumb|center|600px|Chelating macrocyclic structures of interest in inorganic and supramolecular chemistry, an example array. A, the crown ether, 18-crown-6; B, the simple tetra-aza chelator, cyclam; C, an example porphyrin, the unsubstituted porphine; D, a mixed amine/imine, the Curtis macrocycle; E, the related enamine/imine Jäger macrocycle, and F, the tetracarboxylate-derivative DOTA macrocycle.
Nomenclature
nomenclature has extensive rules to cover the naming of cyclic structures, both as core structures, and as substituents appended to alicyclic structures. The term macrocycle is used when a ring-containing compound has a ring of 12 or more atoms. The term polycyclic is used when more than one ring appears in a single molecule. Naphthalene is formally a polycyclic compound, but is more specifically named as a bicyclic compound. Several examples of macrocyclic and polycyclic structures are given in the final gallery below.The atoms that are part of the ring structure are called annular atoms.
Isomerism
Stereochemistry
The closing of atoms into rings may lock particular atoms with distinct substitution by functional groups such that the result is stereochemistry and chirality of the compound, including some manifestations that are unique to rings.Conformational isomerism
Depending on ring size, the three-dimensional shapes of particular cyclic structures—typically rings of 5-atoms and larger—can vary and interconvert such that conformational isomerism is displayed. Indeed, the development of this important chemical concept arose, historically, in reference to cyclic compounds. For instance, cyclohexanes—six membered carbocycles with no double bonds, to which various substituents might be attached, see image—display an equilibrium between two conformations, the chair and the boat, as shown in the image.The chair conformation is the favored configuration, because in this conformation, the steric strain, eclipsing strain, and angle strain that are otherwise possible are minimized. Which of the possible chair conformations predominate in cyclohexanes bearing one or more substituents depends on the substituents, and where they are located on the ring; generally, "bulky" substituents—those groups with large volumes, or groups that are otherwise repulsive in their interactions—prefer to occupy an equatorial location. An example of interactions within a molecule that would lead to steric strain, leading to a shift in equilibrium from boat to chair, is the interaction between the two methyl groups in cis-1,4-dimethylcyclohexane. In this molecule, the two methyl groups are in opposing positions of the ring, and their cis stereochemistry projects both of these groups toward the same side of the ring. Hence, if forced into the higher energy boat form, these methyl groups are in steric contact, repel one another, and drive the equilibrium toward the chair conformation.
Principal uses
Because of the unique shapes, reactivities, properties, and bioactivities that they engender, cyclic compounds are the largest majority of all molecules involved in the biochemistry, structure, and function of living organisms, and in the man-made molecules through which man attempts to exert control over nature and biological systems.Synthetic reactions
Important general reactions for forming rings
There are a variety of specialized reactions whose use is solely the formation of rings, and these will be discussed below. In addition to those, there are a wide variety of general organic reactions that historically have been crucial in the development, first, of understanding the concepts of ring chemistry, and second, of reliable procedures for preparing ring structures in high yield, and with defined orientation of ring substituents. These general reactions include:- Acyloin condensation;
- Anodic oxidations; and
- the Dieckmann condensation as applied to ring formation.
Ring-closing reactions
In organic chemistry, a variety of synthetic procedures are particularly useful in closing carbocyclic and other rings; these are termed ring-closing reactions. Examples include:
- alkyne trimerisation;
- the Bergman cyclization of an enediyne;
- the Diels–Alder, between a conjugated diene and a substituted alkene, and other cycloaddition reactions;
- the Nazarov cyclization reaction, originally being the cyclization of a divinyl ketone;
- various radical cyclizations;
- ring-closing metathesis reactions, which also can be used to accomplish a specific type of polymerization;
- the Ruzicka large ring synthesis, in which two carboxyl groups combine to form a carbonyl group with loss of and ;
- the Wenker synthesis converting a beta amino alcohol to an aziridine