Curtius rearrangement
The Curtius rearrangement, first defined by Theodor Curtius in 1885, is the thermal decomposition of an acyl azide to an isocyanate with loss of nitrogen gas. The isocyanate then undergoes attack by a variety of nucleophiles such as water, alcohols and amines, to yield a primary amine, carbamate or urea derivative respectively. Several reviews have been published.
Reaction mechanism
It was believed that the Curtius rearrangement was a two-step processes, with the loss of nitrogen gas forming an acyl nitrene, followed by migration of the R-group to give the isocyanate. However, recent research has indicated that the thermal decomposition is a concerted process, with both steps happening together, due to the absence of any nitrene insertion or addition byproducts observed or isolated in the reaction. Thermodynamic calculations also support a concerted mechanism.The migration occurs with full retention of configuration at the R-group. The migratory aptitude of the R-group is roughly tertiary > secondary ~ aryl > primary. The isocyanate formed can then be hydrolyzed to give a primary amine, or undergo nucleophilic attack with alcohols and amines to form carbamates and urea derivatives respectively.
Modifications
Research has shown that the Curtius rearrangement is catalyzed by both Brønsted and Lewis acids, via the protonation of, or coordination to the acyl oxygen atom respectively. For example, Fahr and Neumann have shown that the use of boron trifluoride or boron trichloride catalyst reduces the decomposition temperature needed for rearrangement by about 100 °C, and increases the yield of the isocyanate significantly.Photochemical rearrangement
decomposition of the acyl azide is also possible. However, photochemical rearrangement is not concerted and instead occurs by a nitrene intermediate, formed by the cleavage of the weak N–N bond and the loss of nitrogen gas. The highly reactive nitrene can undergo a variety of nitrene reactions, such as nitrene insertion and addition, giving unwanted side products. In the example below, the nitrene intermediate inserts into one of the C–H bonds of the cyclohexane solvent to form N-cyclohexylbenzamide as a side product.Variations
Darapsky degradation
In one variation called the Darapsky degradation, or Darapsky synthesis, a Curtius rearrangement takes place as one of the steps in the conversion of an α-cyanoester to an amino acid. Hydrazine is used to convert the ester to an acylhydrazine, which is reacted with nitrous acid to give the acyl azide. Heating the azide in ethanol yields the ethyl carbamate via the Curtius rearrangement. Acid hydrolysis yields the amine from the carbamate and the carboxylic acid from the nitrile simultaneously, giving the product amino acid.Harger reaction
The photochemical Curtius-like migration and rearrangement of a phosphinic azide forms a metaphosphonimidate in what is also known as the Harger reaction. This is followed by hydrolysis, in the example below with methanol, to give a phosphonamidate.Unlike the Curtius rearrangement, there is a choice of R-groups on the phosphinic azide which can migrate. Harger has found that the alkyl groups migrate preferentially to aryl groups, and this preference increases in the order methyl < primary < secondary < tertiary. This is probably due to steric and conformational factors, as the bulkier the R-group, the less favorable the conformation for phenyl migration.
Synthetic applications
The Curtius rearrangement is tolerant of a large variety of functional groups, and has significant synthetic utility, as many different groups can be incorporated depending on the choice of nucleophile used to attack the isocyanate.For example, when carried out in the presence of tert-butanol, the reaction generates Boc-protected amines, useful intermediates in organic synthesis.
Likewise, when the Curtius reaction is performed in the presence of benzyl alcohol, Cbz-protected amines are formed.