Cryopreservation
Cryopreservation or cryoconservation is a process where biological material—cells, tissues, or organs—are frozen to preserve the material for an extended period of time. At low temperatures any cell metabolism which might cause damage to the biological material in question is effectively stopped. Cryopreservation is an effective way to transport biological samples over long distances, store samples for prolonged periods of time, and create a bank of samples for users.
Molecules, referred to as cryoprotective agents, are added to reduce the osmotic shock and physical stresses cells undergo in the freezing process. Some cryoprotective agents used in research are inspired by plants and animals in nature that have unique cold tolerance to survive harsh winters, including: trees, wood frogs, and tardigrades.
The first human corpse to be frozen with the hope of future resurrection was James Bedford's, a few hours after his cancer-caused death in 1967.
Natural cryopreservation
s, microscopic animals sometimes known as water bears, can survive freezing by replacing most of their internal water with a sugar called trehalose, preventing it from crystallization that otherwise damages, cell membranes. Mixtures of solutes can achieve similar effects. Some solutes, including salts, have the disadvantage that they may be toxic at intense concentrations. Wood frogs can also tolerate the freezing of their blood and other tissues. Urea is accumulated in tissues in preparation for overwintering, and liver glycogen is converted in large quantities to glucose in response to internal ice formation. Both urea and glucose act as "cryoprotectants" to limit the amount of ice that forms and to reduce osmotic shrinkage of cells. Frogs can survive many freeze/thaw events during winter if no more than about 65% of the total body water freezes. Research exploring the phenomenon of "freezing frogs" has been performed primarily by the Canadian researcher, Dr. Kenneth B. Storey.Freeze tolerance, in which organisms survive the winter by freezing solid and ceasing life functions, is known in a few vertebrates: five species of frogs, one of salamanders, one of snakes and three of turtles. Snapping turtles Chelydra serpentina and wall lizards Podarcis muralis also survive nominal freezing but it has not been established to be adaptive for overwintering. In the case of Rana sylvatica one cryopreservant is ordinary glucose, which increases in concentration by approximately 19 mmol/L when the frogs are cooled slowly.
History
One early theoretician of cryopreservation was James Lovelock. In 1953, he suggested that damage to red blood cells during freezing was due to osmotic stress, and that increasing the salt concentration in a dehydrating cell might damage it. In the mid-1950s, he experimented with the cryopreservation of rodents, determining that hamsters could be frozen with 60% of the water in the brain crystallized into ice with no adverse effects; other organs were shown to be susceptible to damage.Cryopreservation was applied to human materials beginning in 1954 with three pregnancies resulting from the insemination of previously frozen sperm. Fowl sperm was cryopreserved in 1957 by a team of scientists in the UK directed by Christopher Polge. During 1963, Peter Mazur, at Oak Ridge National Laboratory in the U.S., demonstrated that lethal intracellular freezing could be avoided if cooling was slow enough to permit sufficient water to leave the cell during progressive freezing of the extracellular fluid. That rate differs between cells of differing size and water permeability: a typical cooling rate around 1 °C/minute is appropriate for many mammalian cells after treatment with cryoprotectants such as glycerol or dimethyl sulphoxide, but the rate is not a universal optimum.
On April 22, 1966, the first human cadaver was frozen—it had been embalmed for two months—by being placed in liquid nitrogen and stored at just above freezing. The cadaver was that of an elderly woman from Los Angeles, whose name is unknown, and was soon thawed out and buried by relatives.
The first human corpse to be frozen with the hope of future resurrection was James Bedford's, a few hours after his cancer-caused death in 1967. Bedford's is the only cryonics corpse frozen before 1974 still frozen today.
Risks
which can cause damage to cells during cryopreservation mainly occur during the freezing stage, and include solution effects, extracellular ice formation, dehydration, and intracellular ice formation. Many of these effects can be reduced by cryoprotectants.Once the preserved material has become frozen, it is relatively safe from further damage.
; Solution effects: As ice crystals grow in freezing water, solutes are excluded, causing them to become concentrated in the remaining liquid water. High concentrations of some solutes can be very damaging.
; Extracellular ice formation: When tissues are cooled slowly, water migrates out of cells and ice forms in the extracellular space. Too much extracellular ice can cause mechanical damage to the cell membrane due to crushing.
; Dehydration: Migration of water, causing extracellular ice formation, can also cause cellular dehydration. The associated stresses on the cell can cause damage directly.
; Intracellular ice formation: While some organisms and tissues can tolerate some extracellular ice, any appreciable intracellular ice is almost always fatal to cells.
Main methods to prevent risks
The main techniques to prevent cryopreservation damages are a well-established combination of controlled rate and slow freezing and a newer flash-freezing process known as vitrification.Slow programmable freezing
Controlled-rate and slow freezing, also known as slow programmable freezing , is a technique where cells are cooled to around -196 °C over the course of several hours.Slow programmable freezing was developed during the early 1970s, and eventually resulted in the first human frozen embryo birth in 1984. Since then, machines that freeze biological samples using programmable sequences, or controlled rates, have been used for human, animal, and cell biology—"freezing down" a sample to better preserve it for eventual thawing, before it is frozen, or cryopreserved, in liquid nitrogen. Such machines are used for freezing oocytes, skin, blood products, embryos, sperm, stem cells, and general tissue preservation in hospitals, veterinary practices and research laboratories around the world. As an example, the number of live births from frozen embryos 'slow frozen' is estimated at some 300,000 to 400,000 or 20% of the estimated 3 million in vitro fertilization births.
Lethal intracellular freezing can be avoided if cooling is slow enough to permit sufficient water to leave the cell during progressive freezing of the extracellular fluid. To minimize the growth of extracellular ice crystals and recrystallization, biomaterials such as alginates, polyvinyl alcohol or chitosan can be used to impede ice crystal growth along with traditional small molecule cryoprotectants. That rate differs between cells of differing size and water permeability: a typical cooling rate of about 1 °C/minute is appropriate for many mammalian cells after treatment with cryoprotectants such as glycerol or dimethyl sulfoxide, but the rate is not a universal optimum. The 1 °C / minute rate can be achieved by using devices such as a rate-controlled freezer or a benchtop portable freezing container.
Several independent studies have provided evidence that frozen embryos stored using slow-freezing techniques may in some ways be 'better' than fresh in IVF. The studies indicate that using frozen embryos and eggs rather than fresh embryos and eggs reduced the risk of stillbirth and premature delivery though the exact reasons are still being explored.
Vitrification
is a flash-freezing process that helps to prevent the formation of ice crystals and helps prevent cryopreservation damage.Researchers Greg Fahy and William F. Rall helped to introduce vitrification to reproductive cryopreservation in the mid-1980s. As of 2000, researchers claim vitrification provides the benefits of cryopreservation without damage due to ice crystal formation. The situation became more complex with the development of tissue engineering as both cells and biomaterials need to remain ice-free to preserve high cell viability and functions, integrity of constructs and structure of biomaterials. Vitrification of tissue engineered constructs was first reported by Lilia Kuleshova, who also was the first scientist to achieve vitrification of oocytes, which resulted in live birth in 1999. For clinical cryopreservation, vitrification usually requires the addition of cryoprotectants before cooling. Cryoprotectants are macromolecules added to the freezing medium to protect cells from the detrimental effects of intracellular ice crystal formation or from the solution effects, during the process of freezing and thawing. They permit a higher degree of cell survival during freezing, to lower the freezing point, to protect cell membrane from freeze-related injury. Cryoprotectants have high solubility, low toxicity at high concentrations, low molecular weight and the ability to interact with water via hydrogen bonding.
Instead of crystallizing, the syrupy solution becomes an amorphous ice—it vitrifies. Rather than a phase change from liquid to solid by crystallization, the amorphous state is like a "solid liquid", and the transformation is over a small temperature range described as the "glass transition" temperature.
Vitrification of water is promoted by rapid cooling, and can be achieved without cryoprotectants by an extremely rapid decrease of temperature. The rate that is required to attain glassy state in pure water was considered to be impossible until 2005.
Two conditions usually required to allow vitrification are an increase of viscosity and a decrease in the freezing temperature. Many solutes do both, but larger molecules generally have a larger effect, particularly on viscosity. Rapid cooling also promotes vitrification.
For established methods of cryopreservation, the solute must penetrate the cell membrane in order to achieve increased viscosity and decrease the freezing temperature inside the cell. Sugars do not readily permeate through the membrane. Those solutes that do, such as DMSO, a common cryoprotectant, are often toxic in intense concentration. One of the difficult compromises of vitrifying cryopreservation concerns limiting the damage produced by the cryoprotectant itself due to cryoprotectant toxicity. Mixtures of cryoprotectants and the use of ice blockers have enabled the 21st Century Medicine company to vitrify a rabbit kidney to −135 °C with their proprietary vitrification mixture. Upon rewarming, the kidney was transplanted successfully into a rabbit, with complete functionality and viability, able to sustain the rabbit indefinitely as the sole functioning kidney. In 2000, FM-2030 became the first person to be successfully vitrified posthumously.