Electrostatic precipitator


An electrostatic precipitator is a filterless device that removes fine particles, such as dust and smoke, from a flowing gas using the force of an induced electrostatic charge minimally impeding the flow of gases through the unit.
In contrast to wet scrubbers, which apply energy directly to the flowing fluid medium, an ESP applies energy only to the particulate matter being collected and therefore is very efficient in its consumption of energy.

Invention

The first use of corona discharge to remove particles from an aerosol was by Hohlfeld in 1824. However, it was not commercialized until almost a century later.
In 1907 Frederick Gardner Cottrell, a professor of chemistry at the University of California, Berkeley, applied for a patent on a device for charging particles and then collecting them through electrostatic attraction—the first recorded electrostatic precipitator. Cottrell first applied the device to the collection of sulphuric acid mist and lead oxide fumes emitted from various acid-making and smelting activities. Wine-producing vineyards in northern California were being adversely affected by the lead emissions.
At the time of Cottrell's invention, the theoretical basis for operation was not understood. The operational theory was developed later in Germany, with the work of Walter Deutsch and the formation of the Lurgi company.
Cottrell used proceeds from his invention to fund scientific research through the creation of a foundation called Research Corporation in 1912, to which he assigned the patents. The intent of the organization was to bring inventions made by educators into the commercial world for the benefit of society at large. The operation of Research Corporation is funded by royalties paid by commercial firms after commercialization occurs. Research Corporation has provided funding to many scientific projects: Goddard's rocketry experiments, Lawrence's cyclotron, production methods for vitamins A and B1, among many others.
Research Corporation set territories for manufacturers of this technology, which included Western Precipitation, Lodge-Cottrell, Lurgi Apparatebau-Gesellschaft, and Japanese Cottrell Corp., and was a clearinghouse for any process improvements. However, anti-trust concerns forced Research Corporation to eliminate territory restrictions in 1946.
Electrophoresis is the term used for migration of gas-suspended charged particles in a direct-current electrostatic field. Traditional CRT television sets tend to accumulate dust on the screen because of this phenomenon.

Types

There are two main types of precipitators:
  • High-voltage, single-stage - Single-stage precipitators combine an ionization and a collection step. They are commonly referred to as Cottrell precipitators.
  • Low-voltage, two-stage - Two-stage precipitators use a similar principle; however, the ionizing section is followed by collection plates.
Described below is the high-voltage, single-stage precipitator, which is widely used in minerals processing operations. The low-voltage, two-stage precipitator is generally used for filtration in air-conditioning systems.

Plate and bar

The majority of electrostatic precipitators installed are the plate type. Particles are collected on flat, parallel surfaces that are 8 to 12 in. apart, with a series of discharge electrodes spaced along the centerline of two adjacent plates. The contaminated gases pass through the passage between the plates, and the particles become charged and adhere to the collection plates. Collected particles are usually removed by rapping the plates and deposited in bins or hoppers at the base of the precipitator.
The most basic precipitator contains a row of thin vertical wires, and followed by a stack of large flat metal plates oriented vertically, with the plates typically spaced about 1 cm to 18 cm apart, depending on the application. The air stream flows horizontally through the spaces between the wires, and then passes through the stack of plates.
A negative voltage of several thousand volts is applied between wire and plate. If the applied voltage is high enough, an electric corona discharge ionizes the air around the electrodes, which then ionizes the particles in the air stream.
The ionized particles, due to the electrostatic force, are diverted towards the grounded plates. Particles build up on the collection plates and are removed from the air stream.
A two-stage design has the benefit of minimizing ozone production, which would adversely affect the health of personnel working in enclosed spaces. For shipboard engine rooms where gearboxes generate an oil mist, two-stage ESP's are used to clean the air, improving the operating environment and preventing buildup of flammable oil fog accumulations. Collected oil is returned to the gear lubricating system.

Tubular

Tubular precipitators consist of cylindrical collection electrodes with discharge electrodes located on the axis of the cylinder. The contaminated gases flow around the discharge electrode and up through the inside of the cylinders. The charged particles are collected on the grounded walls of the cylinder. The collected dust is removed from the bottom of the cylinder.
Tubular precipitators are often used for mist or fog collection or for adhesive, sticky, radioactive, or extremely toxic materials.

Components

The four main components of all electrostatic precipitators are:
  • Power supply unit, to provide high-voltage DC power
  • Ionizing section, to impart a charge to particulates in the gas stream
  • A means of removing the collected particulates
  • A housing to enclose the precipitator zone
The collected material on the electrodes is removed by rapping or vibrating the collecting electrodes either continuously or at a predetermined interval. Cleaning a precipitator can usually be done without interrupting the airflow.

Collection efficiency (''R'')

The following factors affect the efficiency of electrostatic precipitators:
  • Larger collection-surface areas and lower gas-flow rates increase efficiency because of the increased time available for electrical activity to treat the dust particles.
  • An increase in the dust-particle migration velocity to the collecting electrodes increases efficiency. The migration velocity can be increased by:
  • * Decreasing the gas viscosity
  • * Increasing the gas temperature
  • * Increasing the voltage field
Precipitator performance is very sensitive to two particulate properties: 1) electrical resistivity; and 2) particle size distribution. These properties can be measured economically and accurately in the laboratory, using standard tests. Resistivity can be determined as a function of temperature in accordance with IEEE Standard 548. This test is conducted in an air environment containing a specified moisture concentration. The test is run as a function of ascending or descending temperature, or both. Data is acquired using an average ash layer electric field of 4 kV/cm. Since relatively low applied voltage is used and no sulfuric acid vapor is present in the test environment, the values obtained indicate the maximum ash resistivity.
In an ESP, where particle charging and discharging are key functions, resistivity is an important factor that significantly affects collection efficiency. While resistivity is an important phenomenon in the inter-electrode region where most particle charging takes place, it has a particularly important effect on the dust layer at the collection electrode where discharging occurs. Particles that exhibit high resistivity are difficult to charge. But once charged, they do not readily give up their acquired charge on arrival at the collection electrode. On the other hand, particles with low resistivity easily become charged and readily release their charge to the grounded collection plate. Both extremes in resistivity impede the efficient functioning of ESPs. ESPs work best under normal resistivity conditions.
Resistivity, which is a characteristic of particles in an electric field, is a measure of a particle's resistance to transferring charge. Resistivity is a function of a particle's chemical composition as well as flue gas operating conditions such as temperature and moisture. Particles can have high, moderate, or low resistivity.
Bulk resistivity is defined using a more general version of Ohm’s Law, as given in Equation below:

Where:
E is the Electric field strength.Unit:-;
j is the Current density.Unit:-; and
ρ is the Resistivity.Unit:-
A better way of displaying this would be to solve for resistivity as a function of applied voltage and current, as given in Equation below:

Where:
ρ = Resistivity.Unit:-
V = The applied DC potential.Unit:-;
I = The measured current.Unit:-;
l = The ash layer thickness.Unit:-; and
A = The current measuring electrode face area.Unit:-.
Resistivity is the electrical resistance of a dust sample 1.0 cm2 in cross-sectional area, 1.0 cm thick, and is recorded in units of ohm-cm. A method for measuring resistivity will be described in this article. The table below, gives value ranges for low, normal, and high resistivity.
ResistivityRange of Measurement
Lowbetween 104 and 107 ohm-cm
Normalbetween 107 and 2 × 1010 ohm-cm
Highabove 2 × 1010 ohm-cm

Dust layer resistance

Resistance affects electrical conditions in the dust layer by a potential electric field being formed across the layer as negatively charged particles arrive at its surface and leak their electrical charges to the collection plate. At the metal surface of the electrically grounded collection plate, the voltage is zero, whereas at the outer surface of the dust layer, where new particles and ions are arriving, the electrostatic voltage caused by the gas ions can be quite high. The strength of this electric field depends on the resistance and thickness of the dust layer.
In high-resistance dust layers, the dust is not sufficiently conductive, so electrical charges have difficulty moving through the dust layer. Consequently, electrical charges accumulate on and beneath the dust layer surface, creating a strong electric field.
Voltages can be greater than 10,000 volts. Dust particles with high resistance are held too strongly to the plate, making them difficult to remove and causing trapping problems.
In low resistance dust layers, the corona current is readily passed to the grounded collection electrode. Therefore, a relatively weak electric field, of several thousand volts, is maintained across the dust layer. Collected dust particles with low resistance do not adhere strongly enough to the collection plate. They are easily dislodged and become retained in the gas stream.
The electrical conductivity of a bulk layer of particles depends on both surface and volume factors. Volume conduction, or the motions of electrical charges through the interiors of particles, depends mainly on the composition and temperature of the particles. In the higher temperature regions, above, volume conduction controls the conduction mechanism. Volume conduction also involves ancillary factors, such as compression of the particle layer, particle size and shape, and surface properties.
Volume conduction is represented in the figures as a straight-line at temperatures above. At temperatures below about, electrical charges begin to flow across surface moisture and chemical films adsorbed onto the particles. Surface conduction begins to lower the resistivity values and bend the curve downward at temperatures below.
These films usually differ both physically and chemically from the interiors of the particles owing to adsorption phenomena. Theoretical calculations indicate that moisture films only a few molecules thick are adequate to provide the desired surface conductivity. Surface conduction on particles is closely related to surface-leakage currents occurring on electrical insulators, which have been extensively studied. An interesting practical application of surface-leakage is the determination of dew point by measurement of the current between adjacent electrodes mounted on a glass surface. A sharp rise in current signals the formation of a moisture film on the glass. This method has been used effectively for determining the marked rise in dew point, which occurs when small amounts of sulfuric acid vapor are added to an atmosphere.
The following discussion of normal, high, and low resistance applies to ESPs operated in a dry state; resistance is not a problem in the operation of wet ESPs because of the moisture concentration in the ESP. The relationship between moisture content and resistance is explained later in this work.