Configuration management
Configuration management is a management process for establishing and maintaining consistency of a product's performance, functional, and physical attributes with its requirements, design, and operational information throughout its life. The CM process is widely used by military engineering organizations to manage changes throughout the system lifecycle of complex systems, such as weapon systems, military vehicles, and information systems. Outside the military, the CM process is also used with IT service management as defined by ITIL, and with other domain models in the civil engineering and other industrial engineering segments such as roads, bridges, canals, dams, and buildings.
Introduction
CM applied over the life cycle of a system provides visibility and control of its performance, functional, and physical attributes. CM verifies that a system performs as intended, and is identified and documented in sufficient detail to support its projected life cycle. The CM process facilitates orderly management of system information and system changes for such beneficial purposes as to revise capability; improve performance, reliability, or maintainability; extend life; reduce cost; reduce risk and liability; or correct defects. The relatively minimal cost of implementing CM is returned manyfold in cost avoidance. The lack of CM, or its ineffectual implementation, can be very expensive and sometimes can have such catastrophic consequences such as failure of equipment or loss of life.CM emphasizes the functional relation between parts, subsystems, and systems for effectively controlling system change. It helps to verify that proposed changes are systematically considered to minimize adverse effects. Changes to the system are proposed, evaluated, and implemented using a standardized, systematic approach that ensures consistency, and proposed changes are evaluated in terms of their anticipated impact on the entire system. CM verifies that changes are carried out as prescribed and that documentation of items and systems reflects their true configuration. A complete CM program includes provisions for the storing, tracking, and updating of all system information on a component, subsystem, and system basis.
A structured CM program ensures that documentation for items is accurate and consistent with the actual physical design of the item. In many cases, without CM, the documentation exists but is not consistent with the item itself. For this reason, engineers, contractors, and management are frequently forced to develop documentation reflecting the actual status of the item before they can proceed with a change. This reverse engineering process is wasteful in terms of human and other resources and can be minimized or eliminated using CM.
History
Configuration Management originated in the United States Department of Defense in the 1950s as a technical management discipline for hardware material items—and it is now a standard practice in virtually every industry. The CM process became its own technical discipline sometime in the late 1960s when the DoD developed a series of military standards called the "480 series" that were subsequently issued in the 1970s. In 1991, the "480 series" was consolidated into a single standard known as the MIL–STD–973 that was then replaced by MIL–HDBK–61 pursuant to a general DoD goal that reduced the number of military standards in favor of industry technical standards supported by standards developing organizations. This marked the beginning of what has now evolved into the most widely distributed and accepted standard on CM, ANSI–EIA–649–1998. Now widely adopted by numerous organizations and agencies, the CM discipline's concepts include systems engineering, Integrated Logistics Support, Capability Maturity Model Integration, ISO 9000, Prince2 project management method, COBIT, ITIL, product lifecycle management, and Application Lifecycle Management. Many of these functions and models have redefined CM from its traditional holistic approach to technical management. Some treat CM as being similar to a librarian activity, and break out change control or change management as a separate or stand alone discipline.Overview
CM is the practice of handling changes systematically so that a system maintains its integrity over time. CM implements the policies, procedures, techniques, and tools that manage, evaluate proposed changes, track the status of changes, and maintain an inventory of system and support documents as the system changes. CM programs and plans provide technical and administrative direction to the development and implementation of the procedures, functions, services, tools, processes, and resources required to successfully develop and support a complex system. During system development, CM allows program management to track requirements throughout the life-cycle through acceptance and operations and maintenance. As changes inevitably occur in the requirements and design, they must be approved and documented, creating an accurate record of the system status. Ideally the CM process is applied throughout the system lifecycle. Most professionals mix up or get confused with Asset management, where it inventories the assets on hand. The key difference between CM and AM is that the former does not manage the financial accounting aspect but on service that the system supports or in other words, that the later is trying to realize value from an IT asset.The CM process for both hardware- and software-configuration items comprises five distinct disciplines as established in the MIL–HDBK–61A and in ANSI/EIA-649. Members of an organization interested in applying a standard change-management process will employ these disciplines as policies and procedures for establishing baselines, manage and control change, and monitor and assess the effectiveness and correctness of progress. The IEEE 12207 process IEEE 12207.2 also has these activities and adds "Release management and delivery".
The five disciplines are:
- CM Planning and Management: a formal document and plan to guide the CM program that includes items such as:
- * Personnel
- * Responsibilities and resources
- * Training requirements
- * Administrative meeting guidelines, including a definition of procedures and tools
- * Baselining processes
- * Configuration control and configuration-status accounting
- * Naming conventions
- * Audits and reviews
- * Subcontractor/vendor CM requirements
- Configuration Identification : consists of setting and maintaining baselines, which define the system or subsystem architecture, components, and any developments at any point in time. It is the basis by which changes to any part of a system are identified, documented, and later tracked through design, development, testing, and final delivery. CI incrementally establishes and maintains the definitive current basis for Configuration Status Accounting of a system and its configuration items throughout their lifecycle until disposal.
- Configuration Control: includes the evaluation of all change-requests and change-proposals, and their subsequent approval or disapproval. It covers the process of controlling modifications to the system's design, hardware, firmware, software, and documentation.
- Configuration Status Accounting: includes the process of recording and reporting configuration item descriptions and all departures from the baseline during design and production. In the event of suspected problems, the verification of baseline configuration and approved modifications can be quickly determined.
- Configuration Verification and Audit: an independent review of hardware and software for the purpose of assessing compliance with established performance requirements, commercial and appropriate military standards, and functional, allocated, and product baselines. Configuration audits verify that the system and subsystem configuration documentation complies with the functional and physical performance characteristics before acceptance into an architectural baseline.
Software
The SCM process further defines the need to trace changes, and the ability to verify that the final delivered software has all of the planned enhancements that are supposed to be included in the release. It identifies four procedures that must be defined for each software project to ensure that a sound SCM process is implemented. They are:
- Configuration identification
- Configuration control
- Configuration status accounting
- Configuration audits
- Configuration identification is the process of identifying the attributes that define every aspect of a configuration item. A configuration item is a product that has an end-user purpose. These attributes are recorded in configuration documentation and baselined. Baselining an attribute forces formal configuration change control processes to be effected in the event that these attributes are changed.
- Configuration change control is a set of processes and approval stages required to change a configuration item's attributes and to re-baseline them.
- Configuration status accounting is the ability to record and report on the configuration baselines associated with each configuration item at any moment of time.
- Configuration audits are broken into functional and physical configuration audits. They occur either at delivery or at the moment of effecting the change. A functional configuration audit ensures that functional and performance attributes of a configuration item are achieved, while a physical configuration audit ensures that a configuration item is installed in accordance with the requirements of its detailed design documentation.