Combinatorial class
In mathematics, a combinatorial class is a countable set of mathematical objects, together with a size function mapping each object to a non-negative integer, such that there are finitely many objects of each size.
Counting sequences and isomorphism
The counting sequence of a combinatorial class is the sequence of the numbers of elements of size i for i = 0, 1, 2,...; it may also be described as a generating function that has these numbers as its coefficients. The counting sequences of combinatorial classes are the main subject of study of enumerative combinatorics. Two combinatorial classes are said to be isomorphic if they have the same numbers of objects of each size, or equivalently, if their counting sequences are the same. Frequently, once two combinatorial classes are known to be isomorphic, a bijective proof of this equivalence is sought; such a proof may be interpreted as showing that the objects in the two isomorphic classes are cryptomorphic to each other.For instance, the triangulations of regular polygons and the set of unrooted binary plane trees are both counted by the Catalan numbers, so they form isomorphic combinatorial classes. A bijective isomorphism in this case is given by planar graph duality: a triangulation can be transformed bijectively into a tree with a leaf for each polygon edge, an internal node for each triangle, and an edge for each two or triangles that are adjacent to each other.