Smart card


A smart card, chip card, or integrated circuit card, is a card used to control access to a resource. It is typically a plastic credit card-sized card with an embedded integrated circuit chip. Many smart cards include a pattern of metal contacts to electrically connect to the internal chip. Others are contactless, and some are both. Smart cards can provide personal identification, authentication, data storage, and application processing. Applications include identification, financial, public transit, computer security, schools, and healthcare. Smart cards may provide strong security authentication for single sign-on within organizations. Numerous nations have deployed smart cards throughout their populations.
The universal integrated circuit card for mobile phones, installed as pluggable SIM card or embedded eSIM, is also a type of smart card., 10.5billion smart card IC chips are manufactured annually, including 5.44billion SIM card IC chips.

History

The basis for the smart card is the silicon integrated circuit chip. It was invented by Robert Noyce at Fairchild Semiconductor in 1959. The invention of the silicon integrated circuit led to the idea of incorporating it onto a plastic card in the late 1960s.

Invention

The idea of incorporating an integrated circuit chip onto a plastic card was first introduced by the German engineer Helmut Gröttrup. In February 1967, Gröttrup filed the patents DE1574074 and DE1574075 in West Germany for a tamper-proof identification switch based on a semiconductor device and described contactless communication via inductive coupling. Its primary use was intended to provide individual copy-protected keys for releasing the tapping process at unmanned gas stations. In September 1968, Gröttrup, together with Jürgen Dethloff as an investor, filed further patents for this identification switch, first in Austria and in 1969 as subsequent applications in the United States, Great Britain, West Germany and other countries.
Independently, Kunitaka Arimura of the Arimura Technology Institute in Japan developed a similar idea of incorporating an integrated circuit onto a plastic card, and filed a smart card patent in March 1970. The following year, Paul Castrucci of IBM filed an American patent titled "Information Card" in May 1971.
In 1974 Roland Moreno patented a secured memory card later dubbed the "smart card". In 1976, Jürgen Dethloff introduced the known element to identify gate user as of USP 4105156.
In 1977, Michel Ugon from Honeywell Bull invented the first microprocessor smart card with two chips: one microprocessor and one memory, and in 1978, he patented the self-programmable one-chip microcomputer that defines the necessary architecture to program the chip. Three years later, Motorola used this patent in its "CP8". At that time, Bull had 1,200 patents related to smart cards. In 2001, Bull sold its CP8 division together with its patents to Schlumberger, who subsequently combined its own internal smart card department and CP8 to create Axalto. In 2006, Axalto and Gemplus, at the time the world's top two smart-card manufacturers, merged and became Gemalto. In 2008, Dexa Systems spun off from Schlumberger and acquired Enterprise Security Services business, which included the smart-card solutions division responsible for deploying the first large-scale smart-card management systems based on public key infrastructure.
The first mass use of the cards was as a telephone card for payment in French payphones, starting in 1983.

Carte bleue

After the Télécarte, microchips were integrated into all French Carte Bleue debit cards in 1992. Customers inserted the card into the merchant's point-of-sale terminal, then typed the personal identification number, before the transaction was accepted. Only very limited transactions are processed without a PIN.
Smart-card-based "electronic purse" systems store funds on the card, so that readers do not need network connectivity. They entered European service in the mid-1990s. They have been common in Germany, Austria, Belgium, France, the Netherlands, Switzerland, Norway, Spain, Sweden, Finland, UK, Denmark and Portugal.
Private electronic purse systems have also been deployed such as the Marines corps at Parris Island allowing small amount payments at the cafeteria.
Since the 1990s, smart cards have been the subscriber identity modules used in GSM mobile-phone equipment. Mobile phones are widely used across the world, so smart cards have become very common.

EMV

Europay MasterCard Visa -compliant cards and equipment are widespread with the deployment led by European countries. The United States started later deploying the EMV technology in 2014, with the deployment still in progress in 2019. Typically, a country's national payment association, in coordination with MasterCard International, Visa International, American Express and Japan Credit Bureau, jointly plan and implement EMV systems.
Historically, in 1993 several international payment companies agreed to develop smart-card specifications for debit and credit cards. The original brands were MasterCard, Visa, and Europay. The first version of the EMV system was released in 1994. In 1998 the specifications became stable.
EMVCo maintains these specifications. EMVco's purpose is to assure the various financial institutions and retailers that the specifications retain backward compatibility with the 1998 version. EMVco upgraded the specifications in 2000 and 2004.
EMV compliant cards were first accepted into Malaysia in 2005 and later into United States in 2014. MasterCard was the first company that was allowed to use the technology in the United States. The United States has felt pushed to use the technology because of the increase in identity theft. The credit card information stolen from Target in late 2013 was one of the largest indicators that American credit card information is not safe. Target made the decision on 30 April 2014 that it would try to implement the smart chip technology to protect itself from future credit card identity theft.
Before 2014, the consensus in America was that there were enough security measures to avoid credit card theft and that the smart chip was not necessary. The cost of the smart chip technology was significant, which was why most of the corporations did not want to pay for it in the United States. The debate finally ended when Target sent out a notice stating unauthorized access to magnetic strips costing Target over 300 million dollars along with the increasing cost of online credit theft was enough for the United States to invest in the technology. The adaptation of EMV's increased significantly in 2015

Development of contactless systems

Contactless smart cards do not require physical contact between a card and reader. They are becoming more popular for payment and ticketing. Typical uses include mass transit and motorway tolls. Visa and MasterCard implemented a version deployed in 2004–2006 in the U.S., with Visa's current offering called Visa Contactless. Most contactless fare collection systems are incompatible, though the MIFARE Standard card from NXP Semiconductors has a considerable market share in the US and Europe.
Use of "Contactless" smart cards in transport has also grown through the use of low cost chips NXP Mifare Ultralight and paper/card/PET rather than PVC. This has reduced media cost so it can be used for low cost tickets and short term transport passes. The cost is typically 10% that of a PVC smart card with larger memory. They are distributed through vending machines, ticket offices and agents. Use of paper/PET is less harmful to the environment than traditional PVC cards.
Smart cards are also being introduced for identification and entitlement by regional, national, and international organizations. These uses include citizen cards, drivers’ licenses, and patient cards. In Malaysia, the compulsory national ID MyKad enables eight applications and has 18 million users. Contactless smart cards are part of ICAO biometric passports to enhance security for international travel.

Complex smart cards

Complex Cards are smart cards that conform to the ISO/IEC 7810 standard and include components in addition to those found in traditional single chip smart cards. Complex Cards were invented by Cyril Lalo and Philippe Guillaud in 1999 when they designed a chip smart card with additional components, building upon the initial concept consisting of using audio frequencies to transmit data patented by Alain Bernard. The first Complex Card prototype was developed collaboratively by Cyril Lalo and Philippe Guillaud, who were working at AudioSmartCard at the time, and Henri Boccia and Philippe Patrice, who were working at Gemplus. It was ISO 7810-compliant and included a battery, a piezoelectric buzzer, a button, and delivered audio functions, all within a 0.84mm thickness card.
The Complex Card pilot, developed by AudioSmartCard, was launched in 2002 by Crédit Lyonnais, a French financial institution. This pilot featured acoustic tones as a means of authentication. Although Complex Cards were developed since the inception of the smart card industry, they only reached maturity after 2010.
Complex Cards can accommodate various peripherals including:
  • One or more buttons,
  • A digital keyboard,
  • An alphabetic keyboard,
  • A touch keyboard,
  • A small display, for a dynamic Card Security Code for instance,
  • A larger digital display, for OTP or balance, QR code
  • An alphanumeric display,
  • A fingerprint sensor,
  • A LED,
  • A buzzer or speaker.
While first generation Complex Cards were battery powered, the second generation is battery-free and receives power through the usual card connector and/or induction.
Sound, generated by a buzzer, was the preferred means of communication for the first projects involving Complex Cards. Later, with the progress of displays, visual communication is now present in almost all Complex Cards.