Chicxulub crater


The Chicxulub crater is an impact crater buried underneath the Yucatán Peninsula in Mexico. Its center is offshore, but the crater is named after the onshore community of Chicxulub Pueblo. It was formed slightly over 66 million years ago when an asteroid, about in diameter, struck Earth. The crater is estimated to be in diameter and in depth. It is one of the largest impact structures on Earth, alongside the much older Sudbury and Vredefort impact structures, and the only one whose peak ring is intact and directly accessible for scientific research.
The crater was discovered by Antonio Camargo and Glen Penfield, geophysicists who had been looking for petroleum in the Yucatán Peninsula during the late 1970s. Penfield was initially unable to obtain evidence that the geological feature was a crater and gave up his search. Later, through contact with Alan R. Hildebrand in 1990, Penfield obtained samples that suggested it was an impact feature. Evidence for the crater's impact origin includes shocked quartz, a gravity anomaly, and tektites in surrounding areas.
The date of the impact coincides with the Cretaceous–Paleogene boundary. It is now widely accepted that the devastation and climate disruption resulting from the impact was the primary cause of the Cretaceous–Paleogene extinction event, a mass extinction of 75% of plant and animal species on Earth, including all non-avian dinosaurs.

Discovery

In the late 1970s, geologist Walter Alvarez and his father, Nobel Prize–winning scientist Luis Walter Alvarez, put forth their theory that the Cretaceous–Paleogene extinction was caused by an impact event. The main evidence of such an impact was contained in a thin layer of clay present in the Cretaceous–Paleogene boundary in Gubbio, Italy. The Alvarezes and colleagues reported that it contained an abnormally high concentration of iridium, a chemical element rare on Earth but common in asteroids. Iridium levels in this layer were as much as 160 times above the background level. It was hypothesized that the iridium was spread into the atmosphere when the impactor was vaporized and settled across Earth's surface among other material thrown up by the impact, producing the layer of iridium-enriched clay. At the time, there was no consensus on what caused the Cretaceous–Paleogene extinction and the boundary layer, with theories including a nearby supernova, climate change, or a geomagnetic reversal. The Alvarezes' impact hypothesis was rejected by many paleontologists, who believed that the lack of fossils found close to the K–Pg boundary—the "three-meter problem"—suggested a more gradual die-off of fossil species.
The Alvarezes, joined by Frank Asaro and Helen Michel from University of California, Berkeley, published their paper on the iridium anomaly in Science in June 1980. Almost simultaneously Jan Smit and Jan Hertogen published their iridium findings from Caravaca, Spain, in Nature in May 1980. These papers were followed by other reports of similar iridium spikes at the K–Pg boundary across the globe, and sparked wide interest in the cause of the K–Pg extinction; over 2,000 papers were published in the 1980s on the topic. There were no known impact craters that were the right age and size, spurring a search for a suitable candidate. Recognizing the scope of the work, Lee Hunt and Lee Silver organized a cross-discipline meeting in Snowbird, Utah, in 1981. Unknown to them, evidence of the crater they were looking for was being presented the same week, and would be largely missed by the scientific community.
File:Chicxulub impact - artist impression.jpg|thumb|alt=A painting depicting the asteroid impacting Earth, creating the Chicxulub crater| Artist's impression of the asteroid slamming into tropical, shallow seas of the sulfur-rich Yucatán Peninsula in what is today Southeast Mexico. The aftermath of the asteroid collision, which occurred approximately 66 million years ago, is believed to have caused the mass extinction of non-avian dinosaurs and many other species on Earth. The impact spewed hundreds of billions of tons of sulfur into the atmosphere, producing a worldwide blackout and freezing temperatures which persisted for at least a decade.
In 1978, geophysicists Glen Penfield and Antonio Camargo were working for the Mexican state-owned oil company Petróleos Mexicanos as part of an airborne magnetic survey of the Gulf of Mexico north of the Yucatán Peninsula. Penfield's job was to use geophysical data to scout possible locations for oil drilling. In the offshore magnetic data, Penfield noted anomalies whose depth he estimated and mapped. He then obtained onshore gravity data from the 1940s. When the gravity maps and magnetic anomalies were compared, Penfield described a shallow "bullseye", in diameter, appearing on the otherwise non-magnetic and uniform surroundings—clear evidence to him of an impact feature. A decade earlier, the same map had suggested a crater to contractor Robert Baltosser, but Pemex corporate policy prevented him from publicizing his conclusion.
Penfield presented his findings to Pemex, who rejected the crater theory, instead deferring to findings that ascribed the feature to volcanic activity. Pemex disallowed release of specific data, but let Penfield and Camargo present the results at the 1981 Society of Exploration Geophysicists conference. That year's conference was under-attended and their report attracted little attention, as many experts on impact craters and the K–Pg boundary were attending the Snowbird conference instead. Carlos Byars, a Houston Chronicle journalist who was familiar with Penfield and had seen the gravitational and magnetic data himself, wrote a front-page story on Penfield and Camargo's claim, but the news did not propagate widely.
Although Penfield had plenty of geophysical data sets, he had no rock cores or other physical evidence of an impact. He knew Pemex had drilled exploratory wells in the region. In 1951, one well bored into what was described as a thick layer of andesite about down. This layer could have resulted from the intense heat and pressure of an Earth impact, but at the time of the borings it was dismissed as a lava dome—a feature uncharacteristic of the region's geology. Penfield was encouraged by William C. Phinney, curator of lunar rocks at the Johnson Space Center, to find these samples to support his hypothesis. Penfield tried to secure site samples, but was told they had been lost or destroyed. When attempts to return to the drill sites to look for corroborating rocks proved fruitless, Penfield abandoned his search, published his findings and returned to his Pemex work. Seeing the 1980 Science paper, Penfield wrote to Walter Alvarez about the Yucatán structure, but received no response.
Alvarez and other scientists continued their search for the crater, although they were searching in oceans based on incorrect analysis of glassy spherules from the K–Pg boundary that suggested the impactor had landed in open water. Unaware of Penfield's discovery, University of Arizona graduate student Alan R. Hildebrand and faculty adviser William V. Boynton looked for a crater near the Brazos River in Texas. Their evidence included greenish-brown clay with surplus iridium, containing shocked quartz grains and small weathered glass beads that looked to be tektites. Thick, jumbled deposits of coarse rock fragments were also present, thought to have been scoured from one place and deposited elsewhere by an impact event. Such deposits occur in many locations but seemed concentrated in the Caribbean Basin at the K–Pg boundary. When Haitian professor Florentine Morás discovered what he thought to be evidence of an ancient volcano on Haiti, Hildebrand suggested it could be a telltale feature of a nearby impact. Tests on samples retrieved from the K–Pg boundary revealed more tektite glass, formed only in the heat of asteroid impacts and high-yield nuclear detonations.
In 1990, Carlos Byars told Hildebrand of Penfield's earlier discovery of a possible impact crater. Hildebrand contacted Penfield and the pair soon secured two drill samples from the Pemex wells, which had been stored in New Orleans for decades. Hildebrand's team tested the samples, which clearly showed shock-metamorphic materials. A team of California researchers surveying satellite images found a cenote ring centered on the town of Chicxulub Pueblo that matched the one Penfield saw earlier; the cenotes were thought to be caused by subsidence of bolide-weakened lithostratigraphy around the impact crater wall. More recent evidence suggests the crater is wide, and the ring observed is an inner wall of the larger crater. Hildebrand, Penfield, Boynton, Camargo, and others published their paper identifying the crater in 1991. The crater was named for the nearby town of Chicxulub Pueblo. Penfield also recalled that part of the motivation for the name was "to give the academics and NASA naysayers a challenging time pronouncing it" after years of dismissing its existence.
In March 2010, forty-one experts from many countries reviewed the available evidence: twenty years' worth of data spanning a variety of fields. They concluded that the impact at Chicxulub triggered the mass extinctions at the K–Pg boundary. Dissenters, notably Gerta Keller of Princeton University, have proposed an alternate culprit: the eruption of the Deccan Traps in what is now the Indian subcontinent. This period of intense volcanism occurred before and after the Chicxulub impact; dissenting studies argue that the worst of the volcanic activity occurred before the impact, and the role of the Deccan Traps was instead shaping the evolution of surviving species post-impact. A 2013 study compared isotopes in impact glass from the Chicxulub impact with isotopes in ash from the K–Pg boundary, concluding that they were dated almost exactly the same, and within experimental error.