Caller ID


Caller identification is a telephone service, available in analog and digital telephone systems, including voice over IP, that transmits a caller's telephone number to the called party's telephone equipment when the call is being set up. The caller ID service may include the transmission of a name associated with the calling telephone number, in a service called Calling Name Presentation. The service was first defined in 1993 in International Telecommunication UnionTelecommunication Standardization Sector Recommendation Q.731.3.
The information received from the service is displayed on a telephone display screen, on a separately attached device, or on other displays, such as cable television sets when telephone and television service is provided by the same vendor. Value to society includes allowing suicide-prevention hotlines to quickly identify a caller, and enabling businesses
to quickly have confidence in telephoned orders. The customer has control as to whether one's full name or merely first initial appears, a choice that to avoid a fee must be selected when the initial listing is generated.
Caller ID service, which is also known by similar terms such as CID, calling line identification, calling number delivery, calling number identification, calling line identification presentation, and call display, does not work with Centrex, a phone system widely used by corporations that allows outside callers to dial an extension without going through an operator.
The inverse feature, giving the number originally dialed, is known as direct inward dialing, direct dialing inward, or Dialed Number Identification Service. This tells the PBX where to route an incoming call, when there are more internal lines with external phone numbers than there are actual incoming lines in a large company or other organisation.

Calling-line identification

In some countries, the terms caller display, calling line identification presentation , call capture, or just calling line identity are used; call display is the predominant marketing name used in Canada. The concept of calling number identification as a service for POTS subscribers originated from automatic number identification as a part of toll free number service in the United States.
Caller ID and ANI are different and distinct services. ANI was originally a service in a non-electronic central office that identified the telephone number of the line from which a call was originated. In addition to the caller's telephone number, caller ID may also transmit the subscriber's name, when available. The name can be passed on by the originating central office, or it is obtained from a line information database by the terminating switch. If no name is available, the city, State, Province, or other designation may be sent. Some of these databases may be shared among several companies, each paying every time a name is "extracted". It is for this reason that mobile telephone callers may appear as "WIRELESS CALLER", or the central office location of the number.
If the call originates on a POTS line, then caller ID is provided by the service provider's local switch. Since the network does not connect the caller to the callee until the phone is answered, generally the caller ID signal cannot be altered by the caller. Most service providers, however, allow the caller to block caller ID presentation through the vertical service code *67.
A call placed behind a private branch exchange has more options. In the typical telephony environment, a PBX connects to the local service provider through Primary Rate Interface trunks. Generally, although not absolutely, the service provider simply passes whatever calling line ID appears on those PRI access trunks transparently across the Public Switched Telephone Network. This opens up the opportunity for the PBX administrator to program whatever number they choose in their external phone number fields.
Some IP phone services support PSTN gateway installations throughout the world. These gateways egress calls to the local calling area, thus avoiding long distance toll charges. ITSPs also allow a local user to have a number located in "foreign" exchange; the New York caller could have a Los Angeles number, for example. When that user places a call, the calling line ID would be that of a Los Angeles number, although they are actually located in New York. This allows a call return without having to incur long distance calling charges.
With cellphones, the biggest issue appears to be in the passing of calling line ID information through the network. Cellphone companies must support interconnecting trunks to a significant number of wireline and PSTN access carriers.

CLI localisation

Calling line identity localisation is the process of presenting a localised calling line identity to the recipient of a telephone call. CLI localisation is used by various organisations, including call centres, debt collectors and insurance companies. CLI localisation allows companies to increase their contact rate by increasing the chance that a called party will answer a phone call. Because a localised CLI is displayed on the called party's device, the call is perceived as local and recognisable to the caller rather than a withheld, unknown or premium rate number. The presented telephone number is adjusted depending on the area code of the dialed number.
In 2020, the Eastern District of Texas found a single missed call using a localized number was enough to trigger Article III standing under Telephone Consumer Protection Act. The court reasoned, "At issue in this case is a missed call, not a single, unsolicited text message. It only takes one glance at a text message to recognize it is for an extended warranty for a car you have never owned or a cruise you have won from a raffle you never entered. A missed call with a familiar area code, on the other hand, is more difficult to immediately dismiss as an automated message."

History

In 1968, Theodore George "Ted" Paraskevakos, while working in as a communications engineer for SITA in Athens, Greece, began developing a system to automatically identify a telephone caller to a call recipient. After several attempts and experiments, he developed the method in which the caller's number was transmitted to the receiver's device. This method was the basis for modern-day Caller ID technology. From 1969 through 1975, Paraskevakos was issued twenty separate patents related to automatic telephone line identification, and since they significantly predated all other similar patents, they appear as prior art in later United States patents issued to Kazuo Hashimoto and Carolyn A. Doughty. Image:Caller ID receiver.jpg|thumb|200px|right|The first caller identification receiver In 1971, Paraskevakos, working with Boeing in Huntsville, Alabama, constructed and reduced to practice a transmitter and receiver, representing the world's first prototypes of caller-identification devices. They were installed at Peoples' Telephone Company in Leesburg, Alabama, and were demonstrated to several telephone companies. These original and historic working models are still in the possession of Paraskevakos. In the patents related to these devices, Paraskevakos also proposed to send alphanumeric information, such as the caller's name, to the receiving apparatus and to make banking by telephone feasible. He also proposed to identify the calling telephone by special code; e.g., "PF" for public phone, "HO" for home phone, "OF" for office phone, "PL" for police.
In May 1976, Kazuo Hashimoto, a prolific Japanese inventor with over one thousand patents worldwide, first built a prototype of a caller ID display device that could receive caller ID information. His work on caller ID devices and early prototypes was received in the Smithsonian Institution, National Museum of American History in 2000. U.S. patent 4,242,539, filed originally on May 8, 1976, and a resulting patent re-examined at the patent office by AT&T, was successfully licensed to most of the major telecommunications and computer companies in the world.
Initially, the operating telephone companies wanted to have the caller ID function performed by the central office as a voice announcement and charged on a per-call basis. John Harris, an employee of Northern Telecom's telephone set manufacturing division in London, Ontario, promoted the idea of displaying caller ID on a telephone. The telephone was coded ECCS for Enhanced Custom Calling Services. A video of his prototype was used to leverage the feature from the central office to the telephone set.
In 1977, the Brazilian inventor Valdir Bravo Salinas filed a patent application for a caller ID device at the Brazilian Patent and Trademarks Office. The patent was issued in 1982 as patent PI7704466 and is the first patent issued for a caller ID equipment in Brazil. Later in 1980, two other Brazilian inventors, João da Cunha Doya and Nélio José Nicolai, filed patent applications for other caller ID devices. Doya’s application was filed on May 2, 1980 and issued as patent PI8003077. Nicolai’s application was filed on July 2, 1980 and rejected for being a copy of Salinas' invention. In 1981 another application for a caller ID equipment was filed at the INPI by José Daniel Martin Catoira and Afonso Feijó da Costa Ribeiro Neto. This application was granted and the patent issued as patent PI8106464.
The first market trial for Caller ID and other "Custom Local Area Signaling Services" was conducted by BellSouth in January 1984 in Orlando, FL after having been approached by Bell Labs to conduct a trial. A press conference with ABC, NBC, CBS, and CNN was conducted announcing the event. The name Caller ID was decided by the BellSouth Product Team, purposely not trademarking the name so that other Telcos would be free to adopt the name for ubiquity. The other regional Bell operating companies later adopted the name and eventually became the generally accepted name in the United States. Planning for the trial was initiated by a team in Bell Laboratories, AT&T, and Western Electric before the Bell System divestiture, with the participation of Bell Atlantic. The purpose of these trials was to assess the revenue potential of services that depend on deployment of the common channel signaling network needed to transmit the calling number between originating and terminating central offices. Trial results were analyzed by Bellcore members of the original team.
In 1987, Bell Atlantic conducted another market trial in Hudson County, New Jersey, which was followed by limited deployment. BellSouth was the first company to deploy Caller ID commercially in December 1988 in Memphis, Tennessee, with a full deployment to its nine-state region over the next four years. Bell Atlantic was the second local telephone company to deploy Caller ID in New Jersey's Hudson County, followed by US West Communications in 1989.