Bone grafting
Bone grafting is a type of transplantation used to replace missing bone tissue or stimulate the healing of fractures. This surgical procedure is useful for repairing bone fractures that are extremely complex, pose a significant health risk to the patient, or fail to heal properly, leading to pseudoarthrosis. While some small or acute fractures can heal without bone grafting, the risk is greater for large fractures, such as compound fractures. Additionally, structural or morcellized bone grafting can be used in joint replacement revision surgery when wide osteolysis is present.
Bone generally has the ability to regenerate completely but requires a very small fracture space or some sort of scaffold to do so. Bone grafts may be autologous, allograft, or synthetic with similar mechanical properties to bone. Most bone grafts are expected to be resorbed and replaced as the natural bone heals over a few months' time.
The principles involved in successful bone grafts include osteoconduction, osteoinduction, and osteogenesis. Osteogenesis only occurs with autograft tissue and allograft cellular bone matrices.
A more recent application of bone grafting is its use as an antibiotic carrier. Infected bone is poorly perfused, making it difficult to achieve an appropriate antibiotic concentration at the site of infection when intravenous administration is used, especially for antibiotics with large molecules such as vancomycin. In such cases, impacted morcellized bone allografts, impregnated with local antibiotics can achieve much higher concentrations of antibiotics locally than the minimum inhibitory concentration.
Biological mechanism
| Osteoconductive | Osteoinductive | Osteogenic | |
| Alloplast | + | – | – |
| Xenograft | + | – | – |
| Allograft | + | +/– | – |
| Autograft | + | + | + |
Bone grafting is possible because bone tissue, unlike most other tissues, has the ability to regenerate completely if provided the space into which to grow. As native bone grows, it will generally replace the graft material completely, resulting in a fully integrated region of new bone. The biologic mechanisms that provide a rationale for bone grafting are osteoconduction, osteoinduction and osteogenesis.
Osteoconduction
Osteoconduction is termed as "the property of a material to support tissue ingrowth, osteoprogenitor cell growth, and development for bone formation to occur". In the context of bone grafting it occurs when the bone graft material serves as a scaffold for new bone growth that is perpetuated by the native bone. Osteoblasts from the margin of the defect that is being grafted utilize the bone graft material as a framework upon which to spread and generate new bone. Osteoblasts do not originate from the donor tissue, but through the internal ingrowing of the host's cells. The proper bonding of bioactive chemicals in implants used in bone grafting surgery allow the promotion of osteoconductivity in the area of a defect. In the very least, a bone graft material should be osteoconductive by being made up of these bioactive chemicals.Osteoinduction
Osteoinduction involves the stimulation of osteoprogenitor cells to differentiate into osteoblasts that then begin new bone formation. The most widely studied type of osteoinductive cell mediators is bone morphogenetic proteins. A bone graft material that is osteoconductive and osteoinductive will not only serve as a scaffold for currently existing osteoblasts but will also trigger the formation of new osteoblasts, theoretically promoting faster integration of the graft.Osteopromotion
Osteopromotion involves the enhancement of osteoinduction without the possession of osteoinductive properties. For example, enamel matrix derivative has been shown to enhance the osteoinductive effect of demineralized freeze dried bone allograft, but will not stimulate new bone growth alone.Osteogenesis
Osteogenesis occurs when vital osteoblasts originating from the bone graft material contribute to new bone growth along with bone growth generated via the other two mechanisms.Method
Depending on where the bone graft is needed, a different doctor may be requested to do the surgery. Doctors and physicians that perform bone graft procedures are commonly orthopedic surgeons, otolaryngology head and neck surgeon, neurosurgeons, craniofacial surgeons, oral and maxillofacial surgeons, podiatric surgeons and periodontists, dental surgeons, oral surgeons and implantologists.Autograft
bone grafting involves utilizing bone obtained from the same individual receiving the graft. Bone can be harvested from non-essential bones, such as from the iliac crest, or more commonly in oral and maxillofacial surgery, from the mandibular symphysis or anterior mandibular ramus ; this is particularly true for block grafts, in which a small block of bone is placed whole in the area being grafted. When a block graft will be performed, autogenous bone is the most preferred because there is less risk of the graft rejection because the graft originated from the patient's own body. As indicated in the chart above, such a graft would be osteoinductive and osteogenic, as well as osteoconductive. A negative aspect of autologous grafts is that an additional surgical site is required, in effect adding another potential location for post-operative pain and complications.Autologous bone is typically harvested from intra-oral sources as the chin or extra-oral sources as the iliac crest, the fibula, the ribs, the mandible and even parts of the skull.
All bone requires a blood supply in the transplanted site. Depending on where the transplant site is and the size of the graft, an additional blood supply may be required. For these types of grafts, extraction of the part of the periosteum and accompanying blood vessels along with donor bone is required. This kind of graft is known as a vital bone graft.
An autograft may also be performed without a solid bony structure, for example, using bone reamed from the anterior superior iliac spine. In this case, there is an osteoinductive and osteogenic action, however, there is no osteoconductive action, as there is no solid bony structure.
Chin offers a large amount of cortico-cancellous autograft and easy access among all the intraoral sites. It can be easily harvested in the office settings under local anaesthesia on an outpatient basis. Proximity of the donor and recipient sites reduce operative time and cost. Convenient surgical access, low morbidity, elimination of hospital stay, minimal donor site discomfort and avoidance of cutaneous scars are the added advantages.
Dentin graft
bone, made from extracted teeth, comprises more than 85% of tooth structure, the enamel consists of HA mineral and comprises 10% of tooth structure. Dentin is similar to bone in its chemical composition, by volume 70–75% is HA mineral and 20% organic matrix, mostly fibrous type I collagen. Dentin, like bone, may release growth and differentiating factors while being resorbed by osteoclasts. In order to make the dentin graft usable and bacteria-free, some companies have developed clinical procedures which include grinding, sorting and cleaning of the teeth for immediate or future use. In Korea, the Korea Tooth Bank performed bio-recycling of 38 000 patients' own teeth from January 2009 until October 2012.Allografts
bone, like autogenous bone, is derived from humans; the difference is that allograft is harvested from an individual other than the one receiving the graft. Allograft bone can be taken from cadavers that have donated their bone so that it can be used for living people who are in need of it; it is typically sourced from a bone bank. Bone banks also supply allograft bone sourced from living human bone donors who are undergoing elective total hip arthroplasty. During total hip replacement, the orthopaedic surgeon removes the patient's femoral head, as a necessary part of the process of inserting the artificial hip prosthesis. The femoral head is a roughly spherical area of bone, located at the proximal end of the femur, with a diameter of 45 mm to 56 mm in adult humans. The patient's femoral head is most frequently discarded to hospital waste at the end of the surgical procedure. However, if a patient satisfies a number of stringent regulatory, medical and social history criteria, and provides informed consent, their femoral head may be deposited in the hospital's bone bank.There are three types of bone allograft available:
- Fresh or fresh-frozen bone
- Freeze-dried bone allograft
- Demineralized freeze-dried bone allograft
Alloplastic grafts