Biomedical waste
Biomedical waste or hospital waste is any kind of waste containing infectious materials generated during the treatment of humans or animals as well as during research involving biologics. It may also include waste associated with the generation of biomedical waste that visually appears to be of medical or laboratory origin, as well research laboratory waste containing biomolecules or organisms that are mainly restricted from environmental release. As detailed below, discarded sharps are considered biomedical waste whether they are contaminated or not, due to the possibility of being contaminated with blood and their propensity to cause injury when not properly contained and disposed. Biomedical waste is a type of biowaste.
Biomedical waste may be solid or liquid. Examples of infectious waste include discarded blood, sharps, unwanted microbiological cultures and stocks, identifiable body parts, other human or animal tissue, used bandages and dressings, discarded gloves, other medical supplies that may have been in contact with blood and body fluids, and laboratory waste that exhibits the characteristics described above. Waste sharps include potentially contaminated used needles, scalpels, lancets and other devices capable of penetrating skin.
Biomedical waste is generated from biological and medical sources and activities, such as the diagnosis, prevention, or treatment of diseases. Common generators of biomedical waste include hospitals, health clinics, nursing homes, emergency medical services, medical research laboratories, offices of physicians, dentists, veterinarians, home health care and morgues or funeral homes. In healthcare facilities, waste with these characteristics may alternatively be called medical or clinical waste. Within healthcare facilities, operating rooms generate the most waste, contributing to the polluted environment.
Biomedical waste is distinct from normal trash or general waste, and differs from other types of hazardous waste, such as chemical, radioactive, universal or industrial waste. Medical facilities generate waste hazardous chemicals and radioactive materials. While such wastes are normally not infectious, they require proper disposal. Some wastes are considered multihazardous, such as tissue samples preserved in formalin.
Effects on humans
Disposal of this waste is an environmental concern, as many medical wastes are classified as infectious or biohazardous and could potentially lead to the spread of infectious disease. The most common danger for humans is the infection which also affects other living organisms in the region. Daily exposure to the wastes leads to accumulation of harmful substances or microbes in the person's body.A 1990 report by the United States Agency for Toxic Substances and Disease Registry concluded that the general public is not likely to be adversely affected by biomedical waste generated in the traditional healthcare setting. They found, however, that biomedical waste from those settings may pose an injury and exposure risks via occupational contact with medical waste for doctors, nurses, and janitorial, laundry and refuse workers. Further, there are opportunities for the general public to come into contact with medical waste, such as needles used illicitly outside healthcare settings, or biomedical waste generated via home health care.
Management
Biomedical waste must be properly managed and disposed of to protect the environment, general public and workers, especially healthcare and sanitation workers who are at risk of exposure to biomedical waste as an occupational hazard. Steps in the management of biomedical waste include generation, accumulation, handling, storage, treatment, transport and disposal.The development and implementation of a national waste management policy can improve biomedical waste management in health facilities in a country.
On-site versus off-site
Disposal occurs off-site, at a location that is different from the site of generation. Treatment may occur on-site or off-site. On-site treatment of large quantities of biomedical waste usually requires the use of relatively expensive equipment, and is generally only cost effective for very large hospitals and major universities who have the space, labour and budget to operate such equipment. Off-site treatment and disposal involves hiring of a biomedical waste disposal service whose employees are trained to collect and haul away biomedical waste in special containers for treatment at a facility designed to handle biomedical waste.Generation and accumulation
Biomedical waste should be collected in containers that are leak-proof and sufficiently strong to prevent breakage during handling. Containers of biomedical waste are marked with a biohazard symbol. The container, marking, and labels are often red.Discarded sharps are usually collected in specialized boxes, often called needle boxes.
Specialized equipment is required to meet OSHA 29 CFR 1910.1450 and EPA 40 CFR 264.173. standards of safety. Minimal recommended equipment include a fume hood and primary and secondary waste containers to capture potential overflow. Even beneath the fume hood, containers containing chemical contaminants should remain closed when not in use. An open funnel placed in the mouth of a waste container has been shown to allow significant evaporation of chemicals into the surrounding atmosphere, which is then inhaled by laboratory personnel, and contributes a primary component to the threat of completing the fire triangle. To protect the health and safety of laboratory staff as well as neighboring civilians and the environment, proper waste management equipment, such as the Burkle funnel in Europe and the ECO Funnel in the U.S., should be utilized in any department which deals with chemical waste. It is to be dumped after treatment.
Operating Rooms
ORs generate around one-third of waste in a hospital. This waste includes but is not limited to biohazards, plastic materials, pharmaceuticals, and linens. Moreover, ORs require large amounts of energy, causing a further negative environmental impact. This is why managing waste generated by ORs is crucial to minimizing overall biomedical waste production. To reduce waste and cost of disposal, recycling and properly labeling waste are imperative. Reusing and repurposing products like gowns and instruments also limit costs and waste. Moreover, streamlining surgical trays and packaging of instruments also promotes a reduction in waste production. Energy saving methods in areas like HVAC systems and anesthesia must also be implemented to promote a "greener" healthcare industry.
The reason ORs generate such an abundance of waste is because of a lack of education of surgeons regarding every surgical procedures' contribution to the carbon footprint. When asked in a survey, in a global cohort consisting of 1,024 surgeons, only 63% indicated that they regarded sustainability as an issue they felt motivated to change. Moreover, only 7.7% of surgeons could estimate the carbon footprint of a surgery, and only 6.5% could estimate their surgical supplies' carbon footprint. This shows an evident knowledge gap surgeons have in regards to the negative environmental effects of surgery and the need to rectify this through education.
Storage and handling
Storage refers to keeping the waste until it is treated on-site or transported off-site for treatment or disposal. There are many options and containers for storage. Regulatory agencies may limit the time for which waste can remain in storage. Handling is the act of moving biomedical waste between the point of generation, accumulation areas, storage locations and on-site treatment facilities. Workers who handle biomedical waste must observe ''standard precautions.''Treatment
The goals of biomedical waste treatment are to reduce or eliminate the waste's hazards, and usually to make the waste unrecognizable. Treatment should render the waste safe for subsequent handling and disposal. There are several treatment methods that can accomplish these goals. It includes segregating the bio waste.Biomedical waste is often incinerated. An efficient incinerator will destroy pathogens and sharps. Source materials are not recognizable in the resulting ash. Alternative thermal treatment can also include technologies such as gasification and pyrolysis including energy recovery with similar waste volume reductions and pathogen destruction.
An autoclave may also be used to treat biomedical waste. An autoclave uses steam and pressure to sterilize the waste or reduce its microbiological load to a level at which it may be safely disposed of. Many healthcare facilities routinely use an autoclave to sterilize medical supplies. If the same autoclave is used to sterilize supplies and treat biomedical waste, administrative controls must be used to prevent the waste operations from contaminating the supplies. Effective administrative controls include operator training, strict procedures, and separate times and space for processing biomedical waste.
Microwave disinfection can also be employed for treatment of biomedical wastes. Microwave irradiation is a type of non-contact heating technologies for disinfection. Microwave chemistry is based on efficient heating of materials by microwave dielectric heating effects. When exposed to microwave frequencies, the dipoles of the water molecules present in cells re-align with the applied electric field. As the field oscillates, the dipoles attempts to realign itself with the alternating electric field and in this process, energy is lost in the form of heat through molecular friction and dielectric loss. Microwave disinfection is a recently developed technology that provides an advantage over old existing technologies of autoclaves as microwave-based disinfection has less cycle time, power consumption and it requires minimal usage of water and consumables as compared to autoclaves.
For liquids and small quantities, a 1–10% solution of bleach can be used to disinfect biomedical waste. Solutions of sodium hydroxide and other chemical disinfectants may also be used, depending on the waste's characteristics. Other treatment methods include heat, alkaline digesters and the use of microwaves.
For autoclaves and microwave systems, a shredder may be used as a final treatment step to render the waste unrecognizable. Some autoclaves have built-in shredders.