Biodiesel production
Biodiesel production is the process of producing the biofuel, biodiesel, through the chemical reactions of transesterification and esterification. This process renders a product and by-products.
The fats and oils react with short-chain alcohols. The alcohols used should be of low molecular weight. Ethanol is the most used because of its low cost, however, greater conversions into biodiesel can be reached using methanol. Although the transesterification reaction can be catalyzed by either acids or bases, the base-catalyzed reaction is more common. This path has lower reaction times and catalyst cost than those acid catalysis. However, alkaline catalysis has the disadvantage of high sensitivity to both water and free fatty acids present in the oils.
Biorefinery process steps
The major steps required to synthesize biodiesel are as follows:Feedstock pretreatment
- Feedstock
- *Microbial oil
- **Oleaginous microorganism
- *Palm oil
- *Soybean oil
- *Coconut oil
- *Vegetable fats and oils
- *Jatropha
- *Animal fat
- *Waste oil
- Yellow grease
- Vegetable oil fuel
- Tallow
Recycled oil is processed to remove impurities from cooking, storage, and handling, such as dirt, charred food, and water. Virgin oils are refined, but not to a food-grade level. Degumming to remove phospholipids and other plant matter is common, though refinement processes vary. Water is removed because its presence during base-catalyzed transesterification results in the saponification of the triglycerides, producing soap instead of biodiesel.
A sample of the cleaned feedstock is then tested via titration against a standardized base solution, to determine the concentration of free fatty acids present in the vegetable oil sample. The acids are then either removed, or are esterified to produce biodiesel.
Reactions
Base-catalyzed transesterification reacts lipids with alcohol to produce biodiesel and an impure coproduct, glycerol. If the feedstock oil is used or has a high acid content, acid-catalyzed esterification can be used to react fatty acids with alcohol to produce biodiesel. Other methods, such as fixed-bed reactors, supercritical reactors, and ultrasonic reactors, forgo or decrease the use of chemical reaction that reduces the quality of substance in chemistry.Product purification
Products of the reaction include not only biodiesel, but also the byproducts soap, glycerol, excess alcohol, and trace amounts of water. All of these byproducts must be removed to meet the standards, but the order of removal is process-dependent.The density of glycerol is greater than that of biodiesel, and this property difference is exploited to separate the bulk of the glycerol coproduct. Residual methanol is typically recovered by distillation and reused. Soaps can be removed or converted into acids. Residual water is also removed from the fuel.
Reactions
Base-catalysed transesterification mechanism
The transesterification reaction is base catalyzed. Any strong base capable of deprotonating the alcohol will work, but the sodium and potassium hydroxides are often chosen for their cost. The presence of water causes undesirable base hydrolysis, so the reaction must be kept dry.In the transesterification mechanism, the carbonyl carbon of the starting ester undergoes nucleophilic attack by the incoming alkoxide to give a tetrahedral intermediate, which either reverts to the starting material, or proceeds to the transesterified product. The various species exist in equilibrium, and the product distribution depends on the relative energies of the reactant and product.
Production methods
Supercritical process
An alternative, catalyst-free method for transesterification uses supercritical methanol at high temperatures and pressures in a continuous process. In the supercritical state, the oil and methanol are in a single phase, and reaction occurs spontaneously and rapidly. The process can tolerate water in the feedstock, free fatty acids are converted to methyl esters instead of soap, so a wide variety of feedstocks can be used. Also the catalyst removal step is eliminated.High temperatures and pressures are required, but energy costs of production are similar or less than catalytic production routes.
Ultra- and high-shear in-line and batch reactors
Ultra- and High Shear in-line or batch reactors allow production of biodiesel continuously, semi- continuously, and in batch-mode. This drastically reduces production time and increases production volume.The reaction takes place in the high-energetic shear zone of the Ultra- and High Shear mixer by reducing the droplet size of the immiscible liquids such as oil or fats and methanol. Therefore, the smaller the droplet size the larger the surface area the faster the catalyst can react.