Benzotrichloride
Benzotrichloride, also known as α,α,α-trichlorotoluene, phenyl chloroform or benzene, is an organic compound with the formula C6H5CCl3. Benzotrichloride is an unstable, colorless or somewhat yellowish, viscous, chlorinated hydrocarbon with a penetrating odor. Benzotrichloride is used extensively as a chemical intermediate for products of various classes, i.e. dyes and antimicrobial agents.
Structure and reactivity
Benzotrichloride is a poorly water-soluble, clear to yellowish liquid with a penetrating odor. It hydrolyzes rapidly to benzoic acid and hydrochloric acid with a half life of about 2.4 minutes, thus making the compound unstable in the presence of water. In other chemical reactions, benzotrichloride reacts at the chlorinated α-carbon, for example in substitution reactions. It is used as an intermediate in the synthesis of benzoyl chloride, benzotrifluoride and 2,4-dihydroxybenzophenone which in turn are also intermediates in other reactions:These compounds are further used to synthesize chemicals needed in the pharmaceutical industry, the synthesis of pesticides, dyes and UV-absorbing compounds which are often used in paint and plastics to prevent degradation by sunlight.
Production
Production capacity of benzotrichloride was estimated at 80,000 tonnes for the year 2000. It is produced by the free radical chlorination of toluene, catalysed by light or radical initiators such as dibenzoyl peroxide. Mono- and di-chlorinated intermediates are observed as benzyl chloride and benzal chloride:In the presence of Lewis acids, chlorination occurs at the ring, giving chlorotoluenes.
Regulation
Benzotrichloride is classified as an extremely hazardous substance in the United States as defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act, and hence its use is subject to a list of reporting requirements by companies or institutions which synthesize, store or use it in large quantities. In 2018, EU member states have approved a European Commission proposal to restrict the use of carcinogenic, mutagenic and reprotoxic substances in clothing, textiles and footwear. In 2015, the Commission published a preliminary list of 286 CMRs it proposed to restrict. Benzotrichloride was listed in this document as a toxic and carcinogenic compound.According to the harmonised classification and labelling approved by the European Union, this substance is toxic if inhaled, causes serious eye damage, may cause cancer, causes skin irritation, is harmful if swallowed, and may cause respiratory irritation.
Metabolism
In a rat experiment with radiolabeled -benzotrichloride a single 40 mg/kg body weight dose was administered. The absorption half-life of BTC from the gastrointestinal tract was determined to be 3 hours. The concentration in the blood peaked at 4 h reaching 6.5 ppm, this decreased to 2.6 ppm after 24 h. The elimination of half-life in blood was 22 h. Elimination took place for 90% through urine and 10% through faeces. After 72 hours 1.5% of the dose was still present in tissue. The highest concentration levels were present in liver, kidney and fat.BTC is rapidly metabolised via hydrolysis to benzoic acid and hydrochloric acid. This benzoic acid is first metabolized into benzoyl-CoA, which is metabolized into hippuric acid by replacing CoA with glycine. This hippuric acid is then excreted. 90% of the BTC was recovered from the rat urine as hippuric acid while small amounts of benzoic acid and phenyl acetic acid were also present. Four unidentified metabolites were also present in urine.
Toxicity
Signs of toxicity
Several symptoms are related to the tested exposure to benzotrichloride in rats: irritation of the eyes, the skin and the respiratory tract. Under occlusive conditions, rabbit skin which was exposed to BTC showed irritation. Next, severe eye irritation was reported in rabbits, after administering 0.1 mL of BTC. This eye irritation lasted up to 7 days. Finally, several rat studies into the acute toxic effects indicate that the respiratory system will be irritated after inhalation or oral uptake of BTC.The effects of repeated inhalation, estimated with experiments on rats, include the following. BTC can lead to bronchitis and bronchopneumonia, depressed weight gain and gasping. Microscopically, inflammation and squamous metaplasia of the cells lining the nasal, tracheal, bronchial and bronchiolar epithelium can occur in rats. Histopathologically, an increased incidence of portal inflammatory cells infiltrate the liver and also bile duct proliferation is likely to occur.
The toxicity of BTC in mammals was assessed by Chu I. et al. by tracking several characteristics in rats for 28 days after oral intake of BTC. Growth rate and food consumption were not found to be affected by treatment. No deaths occurred during these trials.