Bipolar junction transistor


A bipolar junction transistor is a type of transistor that uses both electrons and electron holes as charge carriers. In contrast, a unipolar transistor, such as a field-effect transistor, uses only one kind of charge carrier. A bipolar transistor allows a small current injected at one of its terminals to control a much larger current between the remaining two terminals, making the device capable of amplification or switching.
BJTs use two p–n junctions between two semiconductor types, n-type and p-type, which are regions in a single crystal of material. The junctions can be made in several different ways, such as changing the doping of the semiconductor material as it is grown, by depositing metal pellets to form alloy junctions, or by such methods as diffusion of n-type and p-type doping substances into the crystal. The superior predictability and performance of junction transistors quickly displaced the original point-contact transistor. Diffused transistors, along with other components, are elements of integrated circuits for analog and digital functions. Hundreds of bipolar junction transistors can be made in one circuit at a very low cost.
Bipolar transistor integrated circuits were the main active devices of a generation of mainframe and minicomputers, but computer systems now use complementary metal–oxide–semiconductor integrated circuits relying on the field-effect transistor. Bipolar transistors are still used for amplification of signals, switching, and in mixed-signal integrated circuits using BiCMOS. Specialized types are used for high voltage and high current switches, or for radio-frequency amplifiers.

History

The bipolar point-contact transistor was invented in December 1947 at the Bell Telephone Laboratories by John Bardeen and Walter Brattain under the direction of William Shockley. The junction version known as the bipolar junction transistor, invented by Shockley in 1948, was for three decades the device of choice in the design of discrete and integrated circuits. Nowadays, the use of the BJT has declined in favor of CMOS technology in the design of digital integrated circuits. The incidental low performance BJTs inherent in CMOS ICs, however, are often utilized as bandgap voltage reference, silicon bandgap temperature sensor and to handle electrostatic discharge.

Germanium transistors

The germanium transistor was more common in the 1950s and 1960s but has a greater tendency to exhibit thermal runaway. Since germanium p-n junctions have a lower forward bias than silicon, germanium transistors turn on at lower voltage.

Early manufacturing techniques

Various methods of manufacturing bipolar transistors were developed.
BJTs exist as PNP and NPN types, based on the doping types of the three main terminal regions. An NPN transistor comprises two semiconductor junctions that share a thin p-doped region, and a PNP transistor comprises two semiconductor junctions that share a thin n-doped region. N-type means doped with impurities that provide mobile electrons, while p-type means doped with impurities that provide holes that readily accept electrons.
Charge flow in a BJT is due to diffusion of charge carriers across a junction between two regions of different charge carrier concentration. The regions of a BJT are called emitter, base, and collector. A discrete transistor has three leads for connection to these regions. Typically, the emitter region is heavily doped compared to the other two layers, and the collector is doped more lightly than the base. By design, most of the BJT collector current is due to the flow of charge carriers injected from a heavily doped emitter into the base where they are minority carriers that diffuse toward the collector, so BJTs are classified as minority-carrier devices.
In typical operation, the base–emitter junction is forward biased, which means that the p-doped side of the junction is at a more positive potential than the n-doped side, and the base–collector junction is reverse biased. When forward bias is applied to the base–emitter junction, the equilibrium between the thermally generated carriers and the repelling electric field of the emitter depletion region is disturbed. This allows thermally excited carriers to inject from the emitter into the base region. These carriers create a diffusion current through the base from the region of high concentration near the emitter toward the region of low concentration near the collector.
To minimize the fraction of carriers that recombine before reaching the collector–base junction, the transistor's base region must be thin enough that carriers can diffuse across it in much less time than the semiconductor's minority-carrier lifetime. Having a lightly doped base ensures recombination rates are low. In particular, the thickness of the base must be much less than the diffusion length of the carriers. The collector–base junction is reverse-biased, and so negligible carrier injection occurs from the collector to the base, but carriers that are injected into the base from the emitter, and diffuse to reach the collector–base depletion region, are swept into the collector by the electric field in the depletion region. The thin shared base and asymmetric collector–emitter doping are what differentiates a bipolar transistor from two separate diodes connected in series.

Voltage, current, and charge control

The collector–emitter current can be viewed as being controlled by the base–emitter current, or by the base–emitter voltage. These views are related by the current–voltage relation of the base–emitter junction, which is the usual exponential current–voltage curve of a p–n junction.
The explanation for collector current is the concentration gradient of minority carriers in the base region. Due to low-level injection the ambipolar transport rates is in effect determined by the excess minority carriers.
Detailed transistor models of transistor action, such as the Gummel–Poon model, account for the distribution of this charge explicitly to explain transistor behavior more exactly. The charge-control view easily handles phototransistors, where minority carriers in the base region are created by the absorption of photons, and handles the dynamics of turn-off, or recovery time, which depends on charge in the base region recombining. However, because base charge is not a signal that is visible at the terminals, the current- and voltage-control views are generally used in circuit design and analysis.
In analog circuit design, the current-control view is sometimes used because it is approximately linear. That is, the collector current is approximately times the base current. Some basic circuits can be designed by assuming that the base–emitter voltage is approximately constant and that collector current is β times the base current. However, to accurately and reliably design production BJT circuits, the voltage-control model is required. The voltage-control model requires an exponential function to be taken into account, but when it is linearized such that the transistor can be modeled as a transconductance, as in the Ebers–Moll model, design for circuits such as differential amplifiers again becomes a mostly linear problem, so the voltage-control view is often preferred. For translinear circuits, in which the exponential I–V curve is key to the operation, the transistors are usually modeled as voltage-controlled current sources whose transconductance is proportional to their collector current. In general, transistor-level circuit analysis is performed using SPICE or a comparable analog-circuit simulator, so mathematical model complexity is usually not of much concern to the designer, but a simplified view of the characteristics allows designs to be created following a logical process.