Bandwidth throttling


Bandwidth throttling consists in the limitation of the communication speed, of the ingoing or outgoing data in a network node or in a network device such as computers and mobile phones.
The data speed and rendering may be limited depending on various parameters and conditions.
Bandwidth throttling should be done along with rate limiting pattern to minimize the number of throttling errors.

Overview

Limiting the speed of data sent by a data originator is much more efficient than limiting the speed in an intermediate network device between client and server because while in the first case usually no network packets are lost, in the second case network packets can be lost / discarded whenever ingoing data speed overcomes the bandwidth limit or the capacity of device and data packets cannot be temporarily stored in a buffer queue ; the usage of such a buffer queue is to absorb the peaks of incoming data for very short time lapse.
In the second case discarded data packets can be resent by transmitter and received again.
When a low-level network device discards incoming data packets usually can also notify that fact to data transmitter in order to slow down the transmission speed.
NOTE: Bandwidth throttling should not be confused with rate limiting which operates on client requests at application server level and/or at network management level. Rate limiting can also help in keeping peaks of data speed under control.
These bandwidth limitations can be implemented:
  • at which can be run and configured to throttle data sent through network or even to throttle data received from network ;
  • at .
The is usually perfectly because it is a choice of the client manager or the server manager to limit or not to limit the speed of data received from remote program via network or the speed of data sent to target program.
The instead is considered an in the USA under FCC regulations. While Internet service providers prey on the individual's inability to fight them, fines can range up to $25,000 USD for throttling. In the United States, net neutrality, the principle that ISPs treat all data on the Internet the same, and not discriminate, has been an issue of contention between network users and access providers since the 1990s. With net neutrality, ISPs may not intentionally block, slow down, or charge money for specific online content.
Defined as the intentional slowing or speeding of an internet service by an ISP. It is a reactive measure employed in communication networks to regulate network traffic and minimize bandwidth congestion. Bandwidth throttling can occur at different locations on the network. On a local area network, a system administrator may employ bandwidth throttling to help limit network congestion and server crashes. On a broader level, the ISP may use bandwidth throttling to help reduce a user's usage of bandwidth that is supplied to the local network. Bandwidth throttling is also used as a measurement of data rate on Internet speed test websites.
Throttling can be used to actively limit a user's upload and download rates on programs such as video streaming, BitTorrent protocols and other file sharing applications, as well as even out the usage of the total bandwidth supplied across all users on the network. Bandwidth throttling is also often used in Internet applications, in order to spread a load over a wider network to reduce local network congestion, or over a number of servers to avoid overloading individual ones, and so reduce their risk of the system crashing, and gain additional revenue by giving users an incentive to use more expensive tiered pricing schemes, where bandwidth is not throttled.

Operation

A computer network typically consists of a number of servers, which host data and provide services to clients. The Internet is a good example, in which web servers are used to host websites, providing information to a potentially very large number of client computers. Clients will make requests to servers, which will respond by sending the required data, which may be a song file, a video, and so on, depending on what the client has requested. As there will typically be many clients per server, the data processing demand on a server will generally be considerably greater than on any individual client. And so servers are typically implemented using computers with high data capacity and processing power. The traffic on such a network will vary over time, and there will be periods when client requests will peak or sent responses will be huge, sometimes exceeding the capacity of parts of network and causing congestion, especially in parts of the network that form bottlenecks. This can cause data request failures, or in worst cases, server crashes.
In order to prevent such occurrences, a client / server / system administrator may enable bandwidth throttling:
  • at, to control the speed of ingoing data and/or to control the speed of outgoing data:
  • * a client program could be configured to throttle the sending of a big file to a server program in order to reserve some network bandwidth for other uses ;
  • * a server program could throttle its outgoing data to allow more concurrent active client connections without using too much network bandwidth ;
  • at, to control the speed of data received or sent both at low level and/or at high level :
  • * policies similar or even more sophisticated than those of application software level could be set in low level network devices near Internet access point.

    Application

A bandwidth intensive device, such as a server, might limit the speed at which it receives or sends data, in order to avoid overloading its processing capacity or to saturate network bandwidth. This can be done both at the local network servers or at the ISP servers. ISPs often employ deep packet inspection, which is widely available in routers or provided by special DPI equipment. Additionally, today's networking equipment allows ISPs to collect statistics on flow sizes at line speed, which can be used to mark large flows for traffic shaping. Two ISPs, Cox and Comcast, have stated that they engage in this practice, where they limit users' bandwidth by up to 99%. Today most if not all ISPs throttle their users' bandwidth, with or without the user ever even realizing it. In the specific case of Comcast, an equipment vendor called Sandvine developed the network management technology that throttled P2P file transfers.
Those that could have their bandwidth throttled are typically someone who is constantly downloading and uploading torrents, or someone who just watches a lot of online videos. If this is done by an ISP, many consider this practice as an unfair method of regulating the bandwidth because consumers are not getting the required bandwidth even after paying the prices set by the ISPs. By throttling the people who are using so much bandwidth, the ISPs claim to enable their regular users to have a better overall quality of service.

Network neutrality

is the principle that all Internet traffic should be treated equally. It aims to guarantee a level playing field for all websites and Internet technologies. With net neutrality, the network's only job is to move data—not to choose which data to privilege with higher quality, that is faster, service. In the US, on February 26, 2015, the Federal Communications Commission adopted Open Internet rules. They are designed to protect free expression and innovation on the Internet and promote investment in the nation's broadband networks. The Open Internet rules are grounded in the strongest possible legal foundation by relying on multiple sources of authority, including: Title II of the Communications Act and Section 706 of the Telecommunications Act of 1996. The new rules apply to both fixed and mobile broadband services. However, these rules were rolled back on December 14, 2017. On October 19, 2023, the FCC voted 3-2 to approve a Notice of Proposed Rulemaking that seeks comments on a plan to restore net neutrality rules and regulation of ISPs.On April 25, 2024, the FCC voted 3-2 to reinstate net neutrality in the United States by reclassifying the Internet under Title II.
Bright line rules:
  • No blocking: broadband providers may not block access to legal content, applications, services, or non-harmful devices.
  • No throttling: broadband providers may not impair or degrade lawful Internet traffic on the basis of content, applications, services, or non-harmful devices.
  • No paid prioritization: broadband providers may not favor some lawful Internet traffic over other lawful traffic in exchange for consideration or payment of any kind—in other words, no "fast lanes." This rule also bans ISPs from prioritizing content and services of their own affiliated businesses.

    Throttling vs. capping

Bandwidth throttling works by limiting the speed at which a bandwidth intensive device receives data or the speed of each data response. If these limits are not in place, the device can overload its processing capacity.
Contrary to throttling, in order to use bandwidth when available, but prevent excess, each node in a proactive system should set an outgoing bandwidth cap that appropriately limits the. There are two types of bandwidth capping. A standard cap limits the bitrate or speed of data transfer on a broadband Internet connection. Standard capping is used to prevent individuals from consuming the entire transmission capacity of the medium. A lowered cap reduces an individual user's bandwidth cap as a defensive measure and/or as a punishment for heavy use of the medium's bandwidth. Oftentimes this happens without notifying the user.
The difference is that bandwidth throttling regulates a bandwidth intensive device by limiting how much data that device can receive from each node / client or can output or can send for each response. Bandwidth capping on the other hand limits the total transfer capacity, upstream or downstream, of data over a medium.