Axon guidance
Axon guidance is a subfield of neural development concerning the process by which neurons send out axons to reach their correct targets. Axons often follow very precise paths in the nervous system, and how they manage to find their way so accurately is an area of ongoing research.
Axon growth takes place from a region called the growth cone and reaching the axon target is accomplished with relatively few guidance molecules. Growth cone receptors respond to the guidance cues.
Mechanisms
Growing axons have a highly motile structure at the growing tip called the growth cone, which responds to signals in the extracellular environment that instruct the axon in which direction to grow. These signals, called guidance cues, can be fixed in place or diffusible; they can attract or repel axons. Growth cones contain receptors that recognize these guidance cues and interpret the signal into a chemotropic response. The general theoretical framework is that when a growth cone "senses" a guidance cue, the receptors activate various signaling molecules in the growth cone that eventually affect the cytoskeleton. If the growth cone senses a gradient of guidance cue, the intracellular signaling in the growth cone happens asymmetrically, so that cytoskeletal changes happen asymmetrically and the growth cone turns toward or away from the guidance cue.A combination of genetic and biochemical methods has led to the discovery of several important classes of axon guidance molecules and their receptors:
- Netrins: Netrins are secreted molecules that can act to attract or repel axons by binding to their receptors, DCC and UNC-5.
- Slits: Secreted proteins that normally repel growth cones by engaging Robo class receptors in Slit-Robo cell signaling complexes.
- Ephrins: Ephrins are cell surface molecules that activate Eph receptors on the surface of other cells. This interaction can be attractive or repulsive. In some cases, Ephrins can also act as receptors by transducing a signal into the expressing cell, while Ephs act as the ligands. Signaling into both the Ephrin- and Eph-bearing cells is called "bi-directional signaling."
- Semaphorins: The many types of semaphorins are primarily axonal repellents, and activate complexes of cell-surface receptors called plexins and neuropilins.
- Cell adhesion molecules : Integral membrane proteins mediating adhesion between growing axons and eliciting intracellular signalling within the growth cone. CAMs are the major class of proteins mediating correct axonal navigation of axons growing on axons. There are two CAM subgroups: IgSF-CAMs and Cadherins.
- Developmental morphogens, such as BMPs, Wnts, Hedgehog, and FGFs
- Extracellular matrix and adhesion molecules such as laminin, tenascins, proteoglycans, N-CAM, and L1
- Growth factors like NGF
- Neurotransmitters and modulators like GABA
Integration of information in axon guidance
- Adhesive cues, that provide physical interaction with the substrate necessary for axon protrusion. These cues can be expressed on glial and neuronal cells the growing axon contacts or be part of the extracellular matrix. Examples are laminin or fibronectin, in the extracellular matrix, and cadherins or Ig-family cell-adhesion molecules, found on cell surfaces.
- Tropic cues, that can act as attractants or repellents and cause changes in growth cone motility by acting on the cytoskeleton through intracellular signaling. For example, Netrin plays a role in guiding axons through the midline, acting as both an attractant and a repellent, while Semaphorin3A helps axons grow from the olfactory epithelium to map different locations in the olfactory bulb.
- Modulatory cues, that influence the sensitivity of growth cones to certain guidance cues. For instance, neurotrophins can make axons less sensitive to the repellent action of Semaphorin3A.
Cellular strategies of nerve tract formation
Pioneer axons
The formation of a nerve tract follows several basic rules. In both invertebrate and vertebrate nervous systems initial nerve tracts are formed by the pioneer axons of pioneer neurons. These axons follow a reproducible pathway, stop at intermediate targets, and branch axons at certain choice points, in the process of targeting their final destination. This principle is illustrated by CNS extending axons of sensory neurons in insects.During the process of limb development, proximal neurons are the first to form axonal bundles while growing towards the CNS. In later stages of limb growth, axons from more distal neurons fasciculate with these pioneer axons. Deletion of pioneer neurons disrupts the extension of later axons, destined to innervate the CNS. At the same time, it is worth noting that in most cases pioneer neurons do not contain unique characteristics and their role in axon guidance can be substituted by other neurons. For instance, in Xenopus retinotectal connection systems, the pioneer axons of retinal ganglion cells originate from the dorsal part of the eye. However, if the dorsal half of the eye is replaced by less mature dorsal part, ventral neurons can replace the pioneer pathway of the dorsal cells, after some delay. Studies in zebrafish retina showed that inhibiting neural differentiation of early retinal progenitors prevents axons from exiting the eye. The same study demonstrated aberrant growth trajectories in secondary neurons, following the growth of pioneer neurons missing a guidance receptor. Thus, while the extent of guidance provided by pioneer axons is under debate and may vary from system to system, the pioneer pathways clearly provide the follower projections with guidance cues and enhance their ability to navigate to target.