Range safety
In rocketry, range safety or flight safety is ensured by monitoring the flight paths of missiles and launch vehicles, and enforcing strict guidelines for rocket construction and ground-based operations. Various measures are implemented to protect nearby people, buildings and infrastructure from the dangers of a rocket launch.
Governments maintain many regulations on launch vehicles and associated ground systems, prescribing the procedures that need to be followed by any entity aiming to launch into space. Areas in which one or more spaceports are operated, or ranges, issue closely guarded exclusion zones for air and sea traffic prior to launch, and close off certain areas to the public.
Contingency procedures are performed if a vehicle malfunctions or veers off course mid-flight. Sometimes, a range safety officer commands the flight or mission to end by sending a signal to the flight termination system aboard the rocket. This takes measures to eliminate any means with which the vehicle could endanger anyone or anything on the ground, most often through the use of explosives. Flight termination could also be triggered autonomously by a separate computer unit on the rocket itself.
Range operations
Closure of surrounding areas
Before each launch, the area surrounding the launch pad is evacuated, and notices to aviators and boatsmen to avoid certain locations on launch day are given. This facilitates the creation of a designated area for rockets to launch, called the launch corridor. The borders of the launch corridor are called the destruct lines. The exact coordinates of the launch corridor are dependent on weather and wind directions, and the properties of the launch vehicle and its payload. Launches can be postponed or scrubbed because of a boat, ship or aircraft entering the launch corridor.Monitoring the launch
To assist the range safety officer in monitoring the launch and making eventual decisions, there are many indicators showing the condition of the space vehicle in flight. These included booster chamber pressures, vertical plane charts, and height and speed indicators. Supporting the RSO for this information were a supporting team of RSOs reporting from profile and horizontal parallel wires used at liftoff and telemetry indicators. Throughout the flight, RSOs pay close attention to the instantaneous impact point of the launch vehicle, which is constantly updated along with its position; when a rocket is predicted to cross one of the destruct lines in flight because of any reason, a destruct command is issued to prevent the vehicle from endangering people and assets outside of the safety zone. This involves sending coded messages to special redundant UHF receivers in the various stages or components of the launch vehicle. Previously, the RSO transmitted an 'arm' command just before flight termination, which rendered the FTS usable and shut down the engines of liquid-fueled rockets. Now, the FTS is usually armed just before launch. A separate 'fire' command detonates explosives, typically linear shaped charges, to disable the rocket.Reliability is a high priority in range safety systems, with extensive emphasis on redundancy and pre-launch testing. Range safety transmitters operate continuously at very high power levels to ensure a substantial link margin. The signal levels seen by the range safety receivers are checked before launch and monitored throughout flight to ensure adequate margins. When the launch vehicle is no longer a threat, the range safety system is typically safed to prevent inadvertent activation. The S-IVB stage of the Saturn 1B and Saturn V rockets did this with a command to the range safety system to remove its own power.
By country
United States
In the US space program, range safety is usually the responsibility of a Range Safety Officer, affiliated with either the civilian space program led by NASA or the military space program led by the Department of Defense, through its subordinate unit the United States Space Force. At NASA, the goal is for the general public to be as safe during range operations as they are in their normal day-to-day activities. All US launch vehicles are required to be equipped with a flight termination system.Range safety has been practiced since the early launch attempts conducted from Cape Canaveral in 1950. Space vehicles for sub-orbital and orbital flights from the Eastern and Western Test Ranges were destroyed if they endangered populated areas by crossing pre-determined destruct lines encompassing the safe flight launch corridor. After initial lift-off, flight information is captured with X- and C-band radars, and S-Band telemetry receivers from vehicle-borne transmitters. At the Eastern Test Range, S and C-Band antennas were located in the Bahamas and as far as the island of Antigua, after which the space vehicle finished its propulsion stages or is in orbit. Two switches were used, arm and destruct. The arm switch shut down propulsion for liquid propelled vehicles, and the destruct ignited the primacord surrounding the fuel tanks.
The Cape Canaveral Space Force Station saw around 450 failed launches of missiles and rockets between 1950 and 1998, with an unknown amount of flights ending by intervention of onboard or ground-based safety mechanisms. As of February 2025, the most recent confirmed activation of the flight termination system on a US rocket was during Starship IFT-7 in 2025.
Eastern and Western Ranges
For launches from the Eastern Range, which includes Kennedy Space Center and Cape Canaveral Space Force Station, the Mission Flight Control Officer is responsible for ensuring public safety from the vehicle during its flight up to orbital insertion, or, in the event that the launch is of a ballistic type, until all pieces have fallen safely to Earth. Despite a common misconception, the MFCO is not part of the Safety Office, but is instead part of the Operations group of the Range Squadron of the Space Launch Delta 45 of the Space Force, and is considered a direct representative of the Delta Commander. The MFCO is guided in making destruct decisions by as many as three different types of computer display graphics, generated by the flight analysis section of range safety. One of the primary displays for most vehicles is a vacuum impact point display in which drag, vehicle turns, wind, and explosion parameters are built into the corresponding graphics. Another includes a vertical plane display with the vehicle's trajectory projected onto two planes. For the Space Shuttle, the primary display a MFCO used is a continuous real time footprint, a moving closed simple curve indicating where most of the debris would fall if the MFCO were to destroy the Shuttle at that moment. This real time footprint was developed in response to the Space Shuttle Challenger disaster in 1986 when stray solid rocket boosters unexpectedly broke off from the destroyed core vehicle and began traveling uprange, toward land.Range safety at the Western Range is controlled using a somewhat similar set of graphics and display system. However, the Western Range MFCOs fall under the Safety Team during launches, and they are the focal point for all safety related activities during a launch.
Range safety in US crewed spaceflight
Even for U.S. crewed space missions, the RSO has authority to order the remote destruction of the launch vehicle if it shows signs of being out of control during launch, and if it crosses pre-set abort limits designed to protect populated areas from harm. In the case of crewed flight, the vehicle would be allowed to fly to apogee before the destruct was transmitted. This would allow the astronauts the maximum amount of time for their self-ejection. Just prior to activation of the destruct charges, the engine on the booster stage are also shut down. For example, on the 1960s Mercury/Gemini/Apollo launches, the RSO system was designed to not activate until three seconds after engine cutoff to give the Launch Escape System time to pull the capsule away.The U.S. Space Shuttle orbiter did not have destruct devices, but the solid rocket boosters and external tank both did. After the Space Shuttle Challenger broke up in flight, the RSO ordered the uncontrolled, free-flying SRBs destroyed before they could pose a threat.
Despite the fact that the RSO continues work after Kennedy Space Center hands over control to Mission Control at Johnson Space Center, they are not considered to be a flight controller. The RSO works at the Range Operations Control Center at Cape Canaveral Space Force Station, and the job of the RSO ends when the missile or vehicle moves out of range and is no longer a threat to any sea or land area.