Automated Transfer Vehicle
The Automated Transfer Vehicle, originally Ariane Transfer Vehicle or ATV, was an expendable cargo spacecraft developed by the European Space Agency, used for space cargo transport in 2008–2015. The ATV design was launched to orbit five times, exclusively by the Ariane 5 heavy-lift launch vehicle. It effectively was a larger European counterpart to the Russian Progress cargo spacecraft for carrying upmass to a single destination—the International Space Station —but with three times the capacity.
History
The five ATVs were named after important European figures in science and engineering: Jules Verne, Johannes Kepler, Edoardo Amaldi, Albert Einstein, and Georges Lemaître. Following several delays to the program, the first of these was launched in March 2008. These ATVs performed supply missions to the ISS, transporting various payloads such as propellant, water, air, food, and scientific research equipment; ATVs also reboosted the station into a higher orbit while docked. The ATV was an uncrewed platform that operated with a high level of automation, such as its docking sequence; at no point was it used for transporting passengers.Further use of the ATV was proposed in 2008. Various further developments, including crewed versions of the ATV as well as opportunities to reuse sections or elements of its technology, were studied by both the ESA and Airbus Defence and Space, the principal manufacturer of the vehicle.
However, on 2 April 2012, the ESA announced that the ATV program would be terminated following the launch of the fifth ATV in 2014.
In 2012, ESA member states decided that the ATV design might be adapted to serve as the service module of the NASA Orion spacecraft.
In January 2013, ESA and NASA announced that they would proceed with a combined Orion and ATV derived service module, later renamed European Service Module, which would serve as a major component for the Orion crewed spacecraft. NASA’s Artemis I launched on November 16, 2022, carried the Orion spacecraft with the European Service Module manufactured by Airbus Defence and Space for two planned low fly-by orbits to the Moon. ESA will provide the ESMs for the Artemis program up to Artemis VI with Artemis III to provide the first humans to set foot on the Moon since 1972.
Development
Origins
During the 1990s, as the International Space Station program was taking place, it was collectively recognised by the 15 participating nations that, upon completion, the International Space Station, a crewed space station in Low Earth orbit, would require regular resupply missions in order to meet the needs of the onboard crew as well as to deliver apparatus to support the various scientific tests that would be performed on board. In October 1995, it was agreed that, amongst the various contributions to the ISS program that Europe would assume responsibility for under the auspices of the European Space Agency, one of them would be the Automated Transfer Vehicle, or ATV; this logistics-orientated spacecraft would perform the identified resupply missions to the ISS.On 9 December 1998, the ESA awarded a $470 million contract to proceed with development work on the ATV to French aerospace company Aérospatiale. While Aérospatiale served as the principal contractor for the ATV, it was joined by multiple major subcontractors, including Italian manufacturer Alenia Spazio, Franco-British firm Matra Marconi Space and German aerospace company DaimlerChrysler Aerospace ; some components were also provided by Russian firm S. P. Korolev Rocket and Space Corporation Energia. Prior to 2000, DASA was to serve as the prime contractor for production, after which the role would be gradually transferred to Aérospatiale. At the point at which the contract had been awarded, it was envisioned that the first flight of the ATV would be conducted during September 2003.
The launch of the first ATV, which had been named Jules Verne, was subject to multiple delays, which were partially generated by problems encountered with the Ariane 5 heavy-lift launch vehicle, as well as a substantial software re-write. By May 2003, it was set to be launched sometime during late 2004. By mid 2004, it had been announced that launch of the first ATV, which was by then undergoing electrical testing following the completion of integration work, had been postponed due to technical issues, and was reportedly scheduled to be launched during late 2005, following the issuing of a renegotiated $1.1 billion contract between the ESA and the prime contractor. In March 2005, another launch delay was declared, due to the need for greater development of the failure-mode software along with launch-window timing changes, which put the planned ATV launch back from late 2005 to an undetermined date during 2006. In October 2005, it was clarified that the new launch date for the first ATV would be during 2007.
In September 2006, it was announced that the final stage of testing on the Ariane 5's customised ATV stage was within its final phase. In December 2006, it was announced that the first ATV had completed its vacuum test, marking the successful completion of the key tests and enabling a final launch date to be set. In April 2007, the ATV was subject to four-month long qualification process in response to operational concerns, including safety queries originating from the U.S., and to examine the vehicle's potential commercialisation.
Production
Following multiple restructuring and ownership changes, the prime contractor for the ATV became Airbus Defence and Space, which led a consortium of many sub-contractors. While development work had been started in Les Mureaux, France, much of the activity relocated to Bremen, Germany, as the project moved from its development to the production stage, in which work on the four initial units started. In order to facilitate the relationship between the contractor and the ESA, an integrated ESA team at the Les Mureaux site was established and maintained for the duration of the development.Airbus Defence and Space builds the ATVs in its facility in Bremen. In 2004, contracts and accords were signed for four additional ATVs, which were envisioned to be launched at a rate of around one every two years, bringing the total order, including the first, Jules-Verne, to five vehicles. According to the German Aerospace Center, the development cost of the ATV was approximately €1.35 billion. Reportedly, each ATV spacecraft was costed at roughly US$300 million, which did not include launch costs. In March 2005, RSC Energia signed a €40 million contract with one of the main subcontractors of Airbus Defence and Space, the Italian company Alenia Spazio, to supply the Russian Docking System, refuelling system, and Russian Equipment Control System. Within the Airbus Defence and Space led project, Thales Alenia Space is responsible for the pressurized cargo carrier section of the ATV and manufactures these at the firm's facility in Turin, Italy.
On 31 July 2007, the first ATV, Jules Verne, arrived at the ESA spaceport in Kourou, French Guiana, after a nearly two-week journey from Rotterdam harbour. On 9 March 2008, Jules Verne was launched on top of an Ariane 5 rocket from Kourou. On 3 April 2008, Jules Verne succeeded in automatically docking with the ISS, proving the capabilities of the ESA's first fully automated, expendable cargo resupply spacecraft. The arrival of the ATV came at a time at which there were public concerns over the logistical practicality of supplying the ISS.
In addition to its use by ESA and Russia, the ATV was at one point under consideration to perform services for NASA as part of the Commercial Orbital Transportation Services program to replace the retiring Space Shuttle in its orbital cargo carrying capacity. Under the proposal, which had been issued by a joint venture between EADS and Boeing, the ATV would be launched from Cape Canaveral, Florida, using a Delta IV rocket. One speculated use for NASA's ATV was to achieve the de-orbiting of the ISS once the space station had reached the end of its service life, being the only vehicle capable of doing so at that time after the Shuttle's retirement. Ultimately, the proposal was not awarded with a corresponding contract.
Design
The Automated Transfer Vehicle was a 1990s-design expendable cargo spacecraft. Each vehicle consisted of two distinct sections, the systems bus and the integrated cargo carrier. The system bus contained the ATV's propulsion system, avionics bays, and solar arrays; it was principally used following the vehicle's detachment from the Ariane 5 launcher to automatically traverse the remaining distance and dock with the ISS, the system bus would be inaccessible to the astronauts on board. The integrated cargo carrier consisted of a pressurised module, external bays for fluid and gas cargoes, further avionics and rendezvous sensors, and the docking mechanism. The primary structure of the ATV is protected by a meteorite and debris protection system. The first ATV was built in the 2000s and the first one to fly in space was in 2008.The docking system of the ATV consists of a pair of videometers and a pair of telegoniometers manufactured by Sodern, a subsidiary of Airbus. Data processing for the rendezvous docking maneuver and emergency abort systems were designed and manufactured by CRISA. Additional monitoring data and redundancy was provided by the Kurs automatic docking system, which was also used by Soyuz and Progress spacecraft. Visual imagery is provided by a camera on the Zvezda ISS module.
In terms of its role, the ATV was designed to complement the smaller Russian Progress spacecraft, possessing three times its useful payload capacity. Similar to the Progress, it would carry both bulk liquids and relatively fragile freight, which would be stored within a cargo hold maintained at a pressurized shirt-sleeve environment in order that astronauts would be able to access payloads without the need to put on spacesuits.
The pressurized cargo section of the ATV was based on the Italian-built Multi-Purpose Logistics Module, which was a Shuttle-carried "space barge/container" that had been previously used for transporting equipment to and from the Station. Unlike the MPLM which had to be berthed to the ISS, the ATV used the same docking mechanism as employed upon the Progress. The ATV, like the Progress, also serves as a container for the station's waste. Each ATV weighs 20.7 tonnes at launch and has a cargo capacity of 8 tonnes:
- to of dry cargo,
- Up to of water,
- Up to of gas, with up to two gases per flight,
- Up to of propellant for the re-boost maneuver and refueling the station. The ATV propellant used for re-boost is of a different type from the payload refueling propellant.