Self-steering gear
Self-steering gear is equipment used on sail boats to maintain a chosen course or point of sail without constant human action.
History
Mechanical or "wind vane" self-steering started out as a way to keep model sail boats on course. Before the advent of radio control, model yacht racing was typically contested on long narrow ponds, and the number of stops along the banks was counted as a penalty in the final result. Initially a system of counterweight on the tillers was devised to compensate for the weather helm when the model boat heeled in a gust. These crude systems evolved in a more sophisticated system called Braine Gear after its inventor, George Braine. The Braine steering gear was a fine-tuned system of quadrant on the rudder stock driven by the tension of the mainsail sheet and damped by a rubber band. A more sophisticated system called the vane gear was later devised, it relied on a small vane or airfoil driving the main rudder via an adjustable system of clockwork gears. It was very similar to the later vane driven autopilots seen on transatlantic yachts such as Blondie Hasler's self steering rudder. Some transatlantic singlehanded sailors used a crude form of self steering devices to cross the Atlantic Ocean in the 1920s and 1930s, the most notable being Frenchman Marin Marie who crossed the Atlantic twice in the 1930s, first on a sailing yacht called Winnibelle II and secondly on a motor pinnace called Arielle.Self steering aboard Winnibelle II on its Atlantic crossing from Douarnenez, France, to New York in 1933 was somewhat similar to a Braine gear, using twin jibs with their sheets connected to the rudder via an array of blocks and lines. The long keeled Winnibelle II was perfectly stable on course on close-hauled or beam reach points of sailing but the self steering twin jib system could take over in the trickier downwind broad reaches and running points of sailing.
On the small motor pinnace Arielle, a 13-metre boat propelled by a 65HP French made Baudouin diesel engine which sailed from New York to Le Havre in 1936, the task of steering a motor boat in the Atlantic swells was more daunting. Arielle had two rudders; the main one under the hull, in the propeller race, was for manual steering and the smaller auxiliary rudder was transom mounted. This auxiliary rudder could be mechanically driven by a special wind vane mounted atop of the coachroof consisting of two rectangular airfoils set at an angle on a vertical axle and balanced by a counterweight. It was simple and worked quite well, but could not steer the boat in very light breezes or flat calm.
While Marin Marie was fitting out Arielle in New York he was approached by a French inventor named Casel who offered to fit an electrical autopilot of his invention, free of charge. The Casel autopilot was using the then revolutionary photoelectric cells and a system of light and reflecting mirrors on the magnetic compass rose. Its principle is somewhat similar to modern day electronic autohelms, excepting the modern flux-gate sensor for autopilots system. The Casel autopilot, which included an array of green, red and white telltale control lights, used an electric motor to act on the main rudder. Though its basic principle was sound and was useful in some sections of the passage, it proved to be somewhat too lightly built for a wet vibrating little boat and was trouble ridden. Marin Marie, though appreciative in some occasions generally loathed the temperamental device, specially when he discovered that Casel had inadvertently hidden his stores of Bordeaux wine in the autopilot compartment, unwillingly condemning him to a teetotal Atlantic crossing of some 20 days.
Electronic
Electronic self-steering is controlled by electronics operating according to one or more input sensors, invariably at least a magnetic compass and sometimes wind direction or GPS position versus a chosen waypoint. The electronics module calculates the required steering movement and a drive mechanism causes the rudder to move accordingly.There are several possibilities for the interface between the drive mechanism and the conventional steering system. On yachts, the three most common systems are:
- Direct drive, in which an actuator is attached to the steering quadrant, at the top of the rudder stock inside the boat. This is the least intrusive method of installation.
- Wheel mounting, in which a motor is mounted near the steering wheel, and can be engaged with it when in use. This typically involves either a belt drive or a toothed gear-ring attached to the wheel itself, and is a common option for retro-fitted installations on yachts with a wheel.
- Tiller-pilots are usually the only option on smaller vessels steered with a tiller. They consist of an electrically driven ram which is mounted between the tiller and a fitting on the side of the cockpit. Some are entirely self-contained, needing only a power supply, while others have the control unit separate from the actuator. These are quite popular, as they are maintenance-free and easy to install.
Mechanical
The main goal of a mechanical self-steering gear is to keep a sailboat on a given course towards the apparent wind and to free the helmsman from the steering job. An advantageous side effect is that the sails are kept in optimal angle towards the apparent wind and deliver optimal propulsion force by that. Even in sailboats running under engine, the self steering gear can be used to keep the boat heading into the wind to easily set or change sails a wind vane mounted on an axis being tilted more or less towards the horizon the pressure of the wind in the sail and by that the force on the sheet.The different mechanical principles of coupling a change in apparent wind direction mechanically with a course changing actuator can be roughly grouped:
- Trimm-tab systems, wind vane coupled with a small flap attached at the main rudder, an auxiliary rudder or a servo pendulum rudder.
- Vane to auxiliary rudder with a wind vane directly coupled to an auxiliary rudder.
- Vane to rudder.
- Servo pendulum rudder.
- Servo pendulum with auxiliary rudder.
- Sheet-to-tiller.
Present day autopilots