Aperture


In optics, the aperture of an optical system is the hole or opening that primarily limits light propagated through the system. The aperture defines a bundle of rays from each point on an object that will come to a focus in the image plane.
An optical system typically has many structures that limit ray bundles. These structures may be the edge of a lens or mirror, or a ring or other fixture that holds an optical element in place or may be a special element such as a diaphragm placed in the optical path to limit the light admitted by the system. These structures are called stops, and the aperture stop is the stop that primarily determines the cone of rays that an optical system accepts. As a result, it also determines the ray cone angle and brightness at the image point. Optical systems are typically designed for a particular stop to be the aperture stop, but it is possible for different stops to serve as the aperture stop for objects at different distances. Some rays from object points away from the optical axis may clip on surfaces other than the aperture stop. This is called vignetting. The aperture stop is not necessarily the smallest stop in the system. Magnification and demagnification by lenses and other elements can cause a relatively large stop to be the aperture stop for the system.
In some contexts, especially in photography and astronomy, aperture refers to the opening diameter of the aperture stop through which light can pass. For example, in a telescope, the aperture stop is typically the edges of the objective lens or mirror. One then speaks of a telescope as having, for example, a aperture. In astrophotography, the aperture may be given as a linear measure or as the dimensionless ratio between that measure and the focal length. In other photography, it is usually given as a ratio.
A usual expectation is that the term aperture refers to the opening of the aperture stop, but in reality, the term aperture and the aperture stop are mixed in use. Sometimes even stops that are not the aperture stop of an optical system are also called apertures. Contexts need to clarify these terms.
The word aperture is also used in other contexts to indicate a system which blocks off light outside a certain region. In astronomy, for example, a photometric aperture around a star usually corresponds to a circular window around the image of a star within which the light intensity is assumed.

Application

The aperture stop is an important element in most optical designs. Its most obvious feature is that it limits the amount of light that can reach the image/film plane. This can be either unavoidable due to the practical limit of the aperture stop size, or deliberate to prevent saturation of a detector or overexposure of film. In both cases, the size of the aperture stop determines the amount of light admitted by an optical system. The aperture stop also affects other optical system properties:
  • The opening size of the stop is one factor that affects DOF. A smaller stop produces a longer DOF because it only allows a smaller angle of the cone of light reaching the image plane so the spread of the image of an object point is reduced. A longer DOF allows objects at a wide range of distances from the viewer to all be in focus at the same time.
  • The stop limits the effect of optical aberrations by limiting light such that the light does not reach edges of optics where aberrations are usually stronger than the optics centers. If the opening of the stop is too large, then the image will be distorted by stronger aberrations. More sophisticated optical system designs can mitigate the effect of aberrations, allowing a larger aperture and therefore greater light collecting ability.
  • The stop determines whether the image will be vignetted. Larger stops can cause the light intensity reaching the film or detector to fall off toward the edges of the picture, especially when, for off-axis points, a different stop becomes the aperture stop by virtue of cutting off more light than did the stop that was the aperture stop on the optic axis.
  • The stop location determines the telecentricity. If the aperture stop of a lens is located at the front focal plane of the lens, then it becomes image-space telecentricity, i.e., the lateral size of the image is insensitive to the image plane location. If the stop is at the back focal plane of the lens, then it becomes object-space telecentricity where the image size is insensitive to the object plane location. The telecentricity helps precise two-dimensional measurements because measurement systems with the telecentricity are insensitive to axial position errors of samples or the sensor.
In addition to an aperture stop, a photographic lens may have one or more field stops, which limit the system's field of view. When the field of view is limited by a field stop in the lens vignetting results; this is only a problem if the resulting field of view is less than was desired.
In astronomy, the opening diameter of the aperture stop is a critical parameter in the design of a telescope. Generally, one would want the aperture to be as large as possible, to collect the maximum amount of light from the distant objects being imaged. The size of the aperture is limited, however, in practice by considerations of its manufacturing cost and time and its weight, as well as prevention of aberrations.
Apertures are also used in laser energy control, close aperture z-scan technique, diffractions/patterns, and beam cleaning. Laser applications include spatial filters, Q-switching, high intensity x-ray control.
In light microscopy, the word aperture may be used with reference to either the condenser, field iris or possibly objective lens. See Optical microscope.

In photography

The aperture stop of a photographic lens can be adjusted to control the amount of light reaching the film or image sensor. In combination with variation of shutter speed, the aperture size will regulate the film's or image sensor's degree of exposure to light. Typically, a fast shutter will require a larger aperture to ensure sufficient light exposure, and a slow shutter will require a smaller aperture to avoid excessive exposure.
A device called a diaphragm usually serves as the aperture stop and controls the aperture. The diaphragm functions much like the iris of the eye – it controls the effective diameter of the lens opening. Reducing the aperture size provides less light to sensor and also increases the depth of field, which describes the extent to which subject matter lying closer than or farther from the actual plane of focus appears to be in focus. In general, the smaller the aperture, the greater the distance from the plane of focus the subject matter may be while still appearing in focus.
The lens aperture is usually specified as an f-number, the ratio of focal length to effective aperture diameter. A lens typically has a set of marked "f-stops" that the f-number can be set to. A lower f-number denotes a greater aperture which allows more light to reach the film or image sensor. The photography term "one f-stop" refers to a factor of change in f-number which corresponds to a change in aperture diameter, which in turn corresponds to a factor of 2 change in light intensity.
Aperture priority is a semi-automatic shooting mode used in cameras. It permits the photographer to select an aperture setting and let the camera decide the shutter speed and sometimes also ISO sensitivity for the correct exposure. This is also referred to as Aperture Priority Auto Exposure, A mode, AV mode, or semi-auto mode.
Typical ranges of apertures used in photography are about – or –, covering six stops, which may be divided into wide, middle, and narrow of two stops each, roughly –, –, and – or –, –, and –. These are not sharp divisions, and ranges for specific lenses vary.

Maximum and minimum apertures

The specifications for a given lens typically include the maximum and minimum aperture sizes, for example, –. In this case, is currently the maximum aperture, and is the minimum aperture. The maximum aperture tends to be of most interest and is always included when describing a lens. This value is also known as the lens "speed", as it affects the exposure time. As the aperture area is proportional to the light admitted by a lens or an optical system, the aperture diameter is proportional to the square root of the light admitted, and thus inversely proportional to the square root of required exposure time, such that an aperture of allows for exposure times one quarter that of.
Lenses with apertures opening or wider are referred to as "fast" lenses, although the specific point has changed over time and Super Nokton manual focus lenses in the Micro Four-Thirds System, and the Venus Optics Argus .
Professional lenses for some movie cameras have f-numbers as small as. Stanley Kubrick's film Barry Lyndon has scenes shot by candlelight with a NASA/Zeiss 50mm f/0.7, the fastest lens in film history. Beyond the expense, these lenses have limited application due to the correspondingly shallower depth of field – the scene must either be shallow, shot from a distance, or will be significantly defocused, though this may be the desired effect.
Zoom lenses typically have a maximum relative aperture of to through their range. High-end lenses will have a constant aperture, such as or, which means that the relative aperture will stay the same throughout the zoom range. A more typical consumer zoom will have a variable maximum relative aperture since it is harder and more expensive to keep the maximum relative aperture proportional to the focal length at long focal lengths; to is an example of a common variable aperture range in a consumer zoom lens.
By contrast, the minimum aperture does not depend on the focal length – it is limited by how narrowly the aperture closes, not the lens design – and is instead generally chosen based on practicality: very small apertures have lower sharpness due to diffraction at aperture edges, while the added depth of field is not generally useful, and thus there is generally little benefit in using such apertures. Accordingly, DSLR lens typically have minimum aperture of,, or, while large format may go down to, as reflected in the name of Group f/64. Depth of field is a significant concern in macro photography, however, and there one sees smaller apertures. For example, the Canon MP-E 65mm can have effective aperture as small as. The pinhole optic for Lensbaby creative lenses has an aperture of just.