Amusia


Amusia is a musical disorder that appears mainly as a defect in processing pitch but also encompasses musical memory and recognition. Two main classifications of amusia exist: acquired amusia, which occurs as a result of brain damage, and congenital amusia, which results from a music-processing anomaly present since birth.
Studies have shown that congenital amusia is a deficit in fine-grained pitch discrimination. Early estimates suggested that 4% of the population has this disorder. More recent direct counts based on a sample of 20,000 people indicate a true rate closer to 1.5%. Acquired amusia may take several forms. Patients with brain damage may experience the loss of ability to produce musical sounds while sparing speech, much like aphasics lose speech selectively but can sometimes still sing. Other forms of amusia may affect specific sub-processes of music processing. Current research has demonstrated dissociations between rhythm, melody, and emotional processing of music. Amusia may include impairment of any combination of these skill sets.

Signs and symptoms

Symptoms of amusia are generally categorized as receptive, clinical, or mixed. Symptoms of receptive amusia, sometimes referred to as "musical deafness" or "tone deafness", include the inability to recognize familiar melodies, the loss of ability to read musical notation, and the inability to detect wrong or out-of tune notes. Clinical, or expressive, symptoms include the loss of ability to sing, write musical notation, and/or play an instrument. A mixed disorder is a combination of expressive and receptive impairment.
Clinical symptoms of acquired amusia are much more variable than those of congenital amusia and are determined by the location and nature of the lesion. Brain injuries may affect motor or expressive functioning, including the ability to sing, whistle, or hum a tune, the ability to play an instrument, and the ability to write music. Additionally, brain damage to the receptive dimension affects the faculty to discriminate tunes, the ability to read music, and the ability to identify songs that were familiar prior to the brain damage.
Those with congenital amusia show impaired performance on discrimination, identification and imitation of sentences with intonational differences in pitch direction in their final word. This suggests that amusia can in subtle ways impair language processing.

Social and emotional

Amusic individuals have a remarkable sparing of emotional responses to music in the context of severe and lifelong deficits in processing music. Some individuals with amusia describe music as unpleasant. Others simply refer to it as noise and find it annoying. This can have social implications because amusics often try to avoid music, which in many social situations is not an option.
In China and other countries where tonal languages are spoken, amusia may have the more pronounced social and emotional impact of experiencing difficulty in speaking and understanding the language. However, context clues are often strong enough to determine the correct meaning, similarly to how homophones can be understood.

Related diseases

Amusia has been classified as a learning disability that affects musical abilities. Research suggests that in congenital amusia, younger subjects can be taught tone differentiation techniques. This finding leads researchers to believe that amusia is related to dyslexia and other similar disorders. Research has been shown that amusia may be related to an increase in size of the cerebral cortex, which may be a result of a malformation in cortical development. Conditions such as dyslexia and epilepsy are due to a malformation in cortical development and also lead to an increase in cortical thickness, which leads researchers to believe that congenital amusia may be caused by the identical phenomenon in a different area of the brain.
Amusia is also similar to aphasia in that they affect similar areas of the brain near the temporal lobe. Most cases of those with amusia do not show any symptoms of aphasia. However, a number of cases have shown that those who have aphasia can exhibit symptoms of amusia, especially in acquired aphasia. The two are not mutually exclusive, nor does having one imply possession of the other. In acquired amusia, inability to perceive music correlates with an inability to perform other higher-level functions. In this case, as musical ability improves, so too do the higher cognitive functions which suggests that musical ability is closely related to these higher-level functions, such as memory and learning, mental flexibility, and semantic fluency.
Amusia can also be related to aprosody, a disorder in which the person's speech is affected, becoming extremely monotonous. It has been found that both amusia and aprosody can arise from seizures occurring in the non-dominant hemisphere. They can also both arise from lesions to the brain, as can Broca's aphasia come about simultaneously with amusia from injury. There is a relation between musical abilities and the components of speech; however, it is not understood very well.

Diagnosis

The diagnosis of amusia requires multiple investigative tools all described in the Montreal Protocol for Identification of Amusia. This protocol has at its center the Montreal Battery of Evaluation of Amusia, which involves a series of tests that evaluate the use of musical characteristics known to contribute to the memory and perception of conventional music, but the protocol also allows for the ruling out of other conditions that can explain the clinical signs observed. The battery comprises six subtests which assess the ability to discriminate pitch contour, musical scales, pitch intervals, rhythm, meter, and memory. An individual is considered amusic if they perform two standard deviations below the mean obtained by musically competent controls.
This musical pitch disorder represents a phenotype that serves to identify the associated neuro-genetic factors. Both MRI-based brain structural analyses and electroencephalography are common methods employed to uncover brain anomalies associated with amusia. Additionally, voxel-based morphometry is used to detect anatomical differences between the MRIs of amusic brains and musically intact brains, specifically with respect increased and/or decreased amounts of white and grey matter.

Classifications

There are two general classifications of amusia: congenital amusia and acquired amusia.

Congenital amusia

Congenital amusia, commonly known as tone deafness or a tin ear, refers to a musical disability that cannot be explained by prior brain lesion, hearing loss, cognitive defects, or lack of environmental stimulation, and it affects about 4% of the population. Individuals with congenital amusia seem to lack the musical predispositions with which most people are born. They are unable to recognize or hum familiar tunes even if they have normal audiometry and above-average intellectual and memory skills. Also, they do not show sensitivity to dissonant chords in a melodic context, which, as discussed earlier, is one of the musical predispositions exhibited by infants. The hallmark of congenital amusia is a deficit in fine-grained pitch discrimination, and this deficit is most apparent when congenital amusics are asked to pick out a wrong note in a given melody. If the distance between two successive pitches is small, congenital amusics are not able to detect a pitch change. As a result of this defect in pitch perception, a lifelong musical impairment may emerge due to a failure to internalize musical scales. A lack of fine-grained pitch discrimination makes it extremely difficult for amusics to enjoy and appreciate music, which consists largely of small pitch changes.
Tone-deaf people seem to be disabled only when it comes to music as they can fully interpret the prosody or intonation of human speech. Tone deafness has a strong negative correlation with belonging to societies with tonal languages. This could be evidence that the ability to reproduce and distinguish between notes may be a learned skill; conversely, it may suggest that the genetic predisposition towards accurate pitch discrimination may influence the linguistic development of a population towards tonality. A correlation between allele frequencies and linguistic typological features has been recently discovered, supporting the latter hypothesis.
Tone deafness is also associated with other musical-specific impairments such as the inability to keep time with music, or the inability to remember or recognize a song. These disabilities can appear separately, but some research shows that they are more likely to appear in tone-deaf people. Experienced musicians, such as W. A. Mathieu, have addressed tone deafness in adults as correctable with training.

Acquired amusia

Acquired amusia is a musical disability that shares the same characteristics as congenital amusia, but rather than being inherited, it is the result of brain damage. It is also more common than congenital amusia. While it has been suggested that music is processed by music-specific neural networks in the brain, this view has been broadened to show that music processing also encompasses generic cognitive functions, such as memory, attention, and executive processes. A study was published in 2009 which investigated the neural and cognitive mechanisms that underlie acquired amusia and contribute to its recovery. The study was performed on 53 stroke patients with a left or right hemisphere middle cerebral artery infarction one week, three months, and six months after the stroke occurred. Amusic subjects were identified one week following their stroke, and over the course of the study, amusics and non-amusics were compared in both brain lesion location and their performances on neuropsychological tests.
Results showed that there was no significant difference in the distribution of left and right hemisphere lesions between amusic and non-amusic groups, but that the amusic group had a significantly higher number of lesions to the frontal lobe and auditory cortex. Temporal lobe lesions were also observed in patients with amusia. Amusia is a common occurrence following an ischemic MCA stroke, as evidenced by the 60% of patients who were found to be amusic at the one-week post-stroke stage. While significant recovery takes place over time, amusia can persist for long periods of time. Test results suggest that acquired amusia and its recovery in the post-stroke stage are associated with a variety of cognitive functions, particularly attention, executive functioning and working memory.