Amphibolic
The term amphibolism is used to describe a biochemical pathway that involves both catabolism and anabolism. Catabolism is a degradative phase of metabolism in which large molecules are converted into smaller and simpler molecules, which involves two types of reactions. First, hydrolysis reactions, in which catabolism is the breaking apart of molecules into smaller molecules to release energy. Examples of catabolic reactions are digestion and cellular respiration, where sugars and fats are broken down for energy. Breaking down a protein into amino acids, or a triglyceride into fatty acids, or a disaccharide into monosaccharides are all hydrolysis or catabolic reactions. Second, oxidation reactions involve the removal of hydrogens and electrons from an organic molecule. Anabolism is the biosynthesis phase of metabolism in which smaller simple precursors are converted to large and complex molecules of the cell. Anabolism has two classes of reactions. The first are dehydration synthesis reactions; these involve the joining of smaller molecules together to form larger, more complex molecules. These include the formation of carbohydrates, proteins, lipids and nucleic acids. The second are reduction reactions, in which hydrogens and electrons are added to a molecule. Whenever that is done, molecules gain energy.
The term amphibolic was proposed by B. Davis in 1961 to emphasise the dual metabolic role of such pathways. These pathways are considered to be central metabolic pathways which provide, from catabolic sequences, the intermediates which form the substrate of the metabolic processes.
Reactions exist as amphibolic pathway
All the reactions associated with synthesis of biomolecule converge into the following pathway, viz., glycolysis, the Krebs cycle and the electron transport chain, exist as an amphibolic pathway, meaning that they can function anabolically as well as catabolically.Other important amphibolic pathways are the Embden-Meyerhof pathway, the pentose phosphate pathway and the Entner–Doudoroff pathway.
Embden-Meyerhoff
The Embeden–Meyerhof pathway and the Krebs cycle are the centre of metabolism in nearly all bacteria and eukaryotes. They provide not only energy but also precursors for biosynthesis of macromolecules that make up living systems.Citric acid cycle
The citric acid cycle is a good example of an amphibolic pathway because it functions in both the degradative and biosynthetic processes. The citric acid cycle occurs on the cytosol of bacteria and within the mitochondria of eukaryotic cells. It provides electrons to the electron transport chain which is used to drive the production of ATP in oxidative phosphorylation. Intermediates in the citric acid cycle, such as oxaloacetate, are used to synthesize macromolecule constituents such as amino acids, e.g. glutamate and aspartate.The first reaction of the cycle, in which oxaloacetate condenses with acetate to form citrate is typically anabolic. The next few reactions, which are intramolecular rearrangements, produce isocitrate. The following two reactions, namely the conversion of D-isocitrate to α-Ketoglutarate followed by its conversion to succinyl-CoA, are typically catabolic. Carbon dioxide is lost in each step and succinate is produced.
There is an interesting and critical difference in the coenzymes used in catabolic and anabolic pathways; in catabolism NAD+ serves as an oxidizing agent when it is reduced to NADH. Whereas in anabolism the coenzyme NADPH serves as the reducing agent and is converted to its oxidized form NADP+.
Citric acid cycle has two modes that play two roles, the first being energy production produced by the oxidative mode, as the acetyl group of acetyl-coA is fully oxidized to CO2. This produces most of the ATP in the metabolism of aerobic heterotrophic metabolism, as this energy conversion in the membrane structure by oxidative phosphorylation by moving electron from donor to the acceptor O2. Every cycle give 3 NADH, 1 FADH2, CO2 and GTP. The second role is biosynthetic, as citric acid cycle regenerate oxaloacetate when cycle intermediates are removed for biosynthesis.