Amperometry
Amperometry in chemistry is the detection of ions in a solution based on electric current or changes in electric current.
Amperometry is used in electrophysiology to study vesicle release events using a carbon fiber electrode. Unlike patch clamp techniques, the electrode used for amperometry is not inserted into or attached to the cell but brought nearby of the cell. The measurements from the electrode originate from an oxidizing reaction of a vesicle cargo released into the medium. Another technique used to measure vesicle release is capacitive measurements.
It is the electric current measured between a pair of electrodes. The measured current is directly proportional to the concentration of the analyte.
Example: Blood glucose monitor
Carbon is used as a working electrode which is coated with mediator and glucose oxidase. Ag/AgCl is used as the reference electrode. The enzyme oxidase catalyzes the reaction of glucose with oxygen. Hydrogen peroxide concentration is measured by oxidation which occurs at +0.6V.
H2O2——>O2+2H+ + 2e-
Current is directly proportional to H2O2 concentration this in turn is directly proportional to glucose concentration.
If O2 is low, complete conversion is inhibited. Hence mediator ferrocene is introduced.
Now, current is directly proportional to the concentration of ferrocene which in turn is directly proportional to glucose concentration.
History
or amperometric detection as it was first used in ion chromatography was single-potential or DC amperometry, useful for certain electrochemically active ions such as cyanide, sulfite, and iodide. The development of pulsed amperometric detection for analytes that fouled electrode surfaces when detected eventually helped create a new category of ion chromatography for the determination of carbohydrates. Another advancement, known as integrated amperometry, has increased the sensitivity for other electrochemically active species, such as amines and many compounds that contain reduced sulfur groups, that are sometimes weakly detected by PAD.It was established that neurotransmitters could be electrochemically detected by placing a carbon electrode into tissue and recording the current from oxidizing neurotransmitters. One of the first measurements was made using an implanted carbon fiber electrode in the neostriatum of rats. Further work was done in chromaffin cells to investigate catecholamine release from large dense core vesicles.