APOBEC1
Apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 also known as C->U-editing enzyme APOBEC-1 is a protein that in humans is encoded by the APOBEC1 gene.
This gene encodes a member of the APOBEC protein family and the cytidine deaminase enzyme family. The encoded protein forms a multiple-protein RNA editing holoenzyme with APOBEC1 complementation factor. This holoenzyme is involved in the editing of cytosine-to-uracil nucleotide bases in apolipoprotein B and neurofibromin 1 mRNAs.
APOBEC-1 has been linked with cholesterol control, cancer development and inhibition of viral replication. Its function relies on introducing a stop codon into apolipoprotein B mRNA, which alters lipid metabolism in the gastrointestinal tract. The editing mechanism is highly specific. A1’s deamination of the cytosine base yields uracil, which creates a stop codon in the mRNA.
A1 has been linked with both positive and negative health effects. In rodents, it has wide tissue distribution where as in humans, it is only expressed in the small intestine.
Gene
APOBEC1 lies on human chromosome 12.Function
ApoB is essential in the assembly of very low density lipoproteins from lipids, in the liver and small intestine. By editing ApoB, it forces only the smaller product, ApoB48, to be expressed, which greatly inhibits lipoprotein production. However, A1 is currently found only at extremely low levels in the human liver and intestine, while it is highly expressed in rodents. In humans, A1 is found exclusively in gastrointestinal epithelial cells.Mechanism
A1 modifies the cytosine base at position 6666 on the ApoB mRNA strand through a deamination. An A1 dimer first binds to ACF, which forms the binding complex that is then able to eliminate the amine group from cytosine.ACF binds to the mooring sequence, which puts A1 in position to edit the correct residue. By converting cytosine to uracil, A1 changes the codon from CAA, which codes for glutamine during transcription, to UAA, a stop codon. This stop codon yields the much shorter protein ApoB48 instead of ApoB100, as the mRNA is predisposed to transcript. The editing amount, or expression, of A1 performs is correlated with the insulin concentration in the nucleus, the site of modification. Tests involving A1 mutants with various deleted amino acid sequences have shown that editing activity is dependent on residues 14 to 35. Like all APOBEC proteins, A1 coordinates a zinc atom with two cysteine and one histidine residues that serve as a Lewis acid. Hydrolytic deamination of the cytosine amine group then occurs, catalyzed by the proton transfer from the nearby glutamic acid residue, and the enzymatic structure is conserved by a proline residue.