ALGOL
ALGOL is a family of imperative computer programming languages originally developed in 1958. ALGOL heavily influenced many other languages and was the standard method for algorithm description used by the Association for Computing Machinery in textbooks and academic sources for more than thirty years.
In the sense that the syntax of most modern languages is "Algol-like", it was arguably more influential than three other high-level programming languages among which it was roughly contemporary: FORTRAN, Lisp, and COBOL. It was designed to avoid some of the perceived problems with FORTRAN and eventually gave rise to many other programming languages, including PL/I, Simula, BCPL, B, Pascal, Ada, and C.
ALGOL introduced code blocks and the
begin...end pairs for delimiting them. It was also the first language implementing nested function definitions with lexical scope. Moreover, it was the first programming language which gave detailed attention to formal language definition and through the Algol 60 Report introduced Backus–Naur form, a principal formal grammar notation for language design.There were three major specifications, named after the years they were first published:
- ALGOL 58 – originally proposed to be called IAL, for International Algebraic Language.
- ALGOL 60 – first implemented as X1 ALGOL 60 in 1961. Revised 1963.
- ALGOL 68 – introduced new elements including flexible arrays, slices, parallelism, operator identification. Revised 1973.
History
ALGOL was developed jointly by a committee of European and American computer scientists in a meeting in 1958 at the Swiss Federal Institute of Technology in Zurich. It specified three different syntaxes: a reference syntax, a publication syntax, and an implementation syntax, syntaxes that permitted it to use different keyword names and conventions for decimal points for different languages.ALGOL was used mostly by research computer scientists in the United States and in Europe; commercial applications were hindered by the absence of standard input/output facilities in its description, and the lack of interest in the language by large computer vendors. ALGOL 60 did however become the standard for the publication of algorithms and had a profound effect on future language development.
File:Algol&Fortran family-by-Borkowski.svg|thumb|alt=caption|Family tree of the Algol, Fortran and COBOL programming language dynasty
John Backus developed the Backus normal form method of describing programming languages specifically for ALGOL 58. It was revised and expanded by Peter Naur for ALGOL 60, and at Donald Knuth's suggestion renamed Backus–Naur form.
Peter Naur: "As editor of the ALGOL Bulletin I was drawn into the international discussions of the language and was selected to be member of the European language design group in November 1959. In this capacity I was the editor of the ALGOL 60 report, produced as the result of the ALGOL 60 meeting in Paris in January 1960."
The following people attended the meeting in Paris :
- Friedrich Ludwig Bauer, Peter Naur, Heinz Rutishauser, Klaus Samelson, Bernard Vauquois, Adriaan van Wijngaarden, and Michael Woodger
- John Warner Backus, Julien Green, Charles Katz, John McCarthy, Alan Jay Perlis, and Joseph Henry Wegstein.
Legacy
A significant contribution of the ALGOL 58 Report was to provide standard terms for programming concepts: statement, declaration, type, label, primary, block, and others.ALGOL 60 inspired many languages that followed it. Tony Hoare remarked: "Here is a language so far ahead of its time that it was not only an improvement on its predecessors but also on nearly all its successors." The Scheme programming language, a variant of Lisp that adopted the block structure and lexical scope of ALGOL, also adopted the wording "Revised Report on the Algorithmic Language Scheme" for its standards documents in homage to ALGOL.
Properties
ALGOL 60 as officially defined had no I/O facilities; implementations defined their own in ways that were rarely compatible with each other. In contrast, ALGOL 68 offered an extensive library of transput facilities.ALGOL 60 allowed for two evaluation strategies for parameter passing: the common call-by-value, and call-by-name. Call-by-name has certain effects in contrast to call-by-reference. For example, without specifying the parameters as value or reference, it is impossible to develop a procedure that will swap the values of two parameters if the actual parameters that are passed in are an integer variable and an array that is indexed by that same integer variable. Think of passing a pointer to swap in to a function. Now that every time swap is referenced, it is reevaluated. Say i := 1 and A := 2, so every time swap is referenced it will return the other combination of the values. A similar situation occurs with a random function passed as actual argument.
Call-by-name is known by many compiler designers for the interesting "thunks" that are used to implement it. Donald Knuth devised the "man or boy test" to separate compilers that correctly implemented "recursion and non-local references." This test contains an example of call-by-name.
ALGOL 68 was defined using a two-level grammar formalism invented by Adriaan van Wijngaarden and which bears his name. Van Wijngaarden grammars use a context-free grammar to generate an infinite set of productions that will recognize a particular ALGOL 68 program; notably, they are able to express the kind of requirements that in many other programming language standards are labelled "semantics" and have to be expressed in ambiguity-prone natural language prose, and then implemented in compilers as ad hoc code attached to the formal language parser.
Examples and portability
Code sample comparisons
ALGOL 60
procedure Absmax Size: Result: Subscripts:;value n, m; array a; integer n, m, i, k; real y;
comment The absolute greatest element of the matrix a, of size n by m,
is copied to y, and the subscripts of this element to i and k;
begin
integer p, q;
y := 0; i := k := 1;
for p := 1 step 1 until n do
for q := 1 step 1 until m do
if abs > y then
begin y := abs;
i := p; k := q
end
end Absmax
Here is an example of how to produce a table using Elliott 803 ALGOL.
FLOATING POINT ALGOL TEST'
BEGIN REAL A,B,C,D'
READ D'
FOR A:= 0.0 STEP D UNTIL 6.3 DO
BEGIN
PRINT,££L??'
B := SIN'
C := COS'
PRINT PUNCH,,,A,B,C'
END
END'
ALGOL 68
The following code samples are ALGOL 68 versions of the above ALGOL 60 code samples.ALGOL 68 implementations used ALGOL 60's approaches to stropping. In ALGOL 68's case tokens with the bold typeface are reserved words, types or operators.
proc abs max = real:
comment The absolute greatest element of the matrix a, of size ⌈a by 2⌈a
is transferred to y, and the subscripts of this element to i and k; comment
begin
real y := 0; i := ⌊a; k := 2⌊a;
for p from ⌊a to ⌈a do
for q from 2⌊a to 2⌈a do
if 'abs a > y then
y := abs a;
i := p; k := q
fi
od
od;
y
end # abs max #
Note: lower and upper bounds of an array, and array slicing, are directly available to the programmer.
floating point algol68 test:
; – selects a new page #
printf);
read;
for step from 0 while a:=step*d; a <= 2*pi do
printf; # $l$ - selects a new line. #
b := sin;
c := cos;
printf) # formats output with 1 digit before and 6 after the decimal point. #
od'''
)
Timeline: Hello world
The variations and lack of portability of the programs from one implementation to another is easily demonstrated by the classic hello world program.ALGOL 58 (IAL)
ALGOL 58 had no I/O facilities.ALGOL 60 family
Since ALGOL 60 had no I/O facilities, there is no portable hello world program in ALGOL.The next three examples are in Burroughs Extended Algol. The first two direct output at the interactive terminal they are run on. The first uses a character array, similar to C. The language allows the array identifier to be used as a pointer to the array, and hence in a REPLACE statement.
A simpler program using an inline format:
An even simpler program using the Display statement. Note that its output would end up at the system console :
An alternative example, using Elliott Algol I/O is as follows. Elliott Algol used different characters for "open-string-quote" and "close-string-quote", represented here by and.
Below is a version from Elliott 803 Algol. The standard Elliott 803 used five-hole paper tape and thus only had upper case. The code lacked any quote characters so £ was used for open quote and ? for close quote. Special sequences were placed in double quotes.
HIFOLKS'
BEGIN
PRINT £HELLO WORLD£L??'
END'
The ICT 1900 series Algol I/O version allowed input from paper tape or punched card. Paper tape 'full' mode allowed lower case. Output was to a line printer. The open and close quote characters were represented using '' and spaces by %.
'BEGIN'
WRITE TEXT;
'END'