-yllion


-yllion is a proposal from Donald Knuth for the terminology and symbols of an alternate decimal superbase system. In it, he adapts the familiar English terms for large numbers to provide a systematic set of names for much larger numbers. In addition to providing an extended range, -yllion also dodges the long and short scale ambiguity of -illion.
Knuth's digit grouping is exponential instead of linear; each division doubles the number of digits handled, whereas the familiar system only adds three or six more. His system is basically the same as one of the ancient and now-unused Chinese numeral systems, in which units stand for 104, 108, 1016, 1032,..., 102n, and so on. Today the corresponding Chinese characters are used for 104, 108, 1012, 1016, and so on.

Details and examples

In Knuth's -yllion proposal:
  • 1 to 999 still have their usual names.
  • 1000 to 9999 are divided before the 2nd-last digit and named "foo hundred bar."
  • 104 to 108 − 1 are divided before the 4th-last digit and named "foo myriad bar". Knuth also introduces at this level a grouping symbol for the numeral. So 382,1902 is "three hundred eighty-two myriad nineteen hundred two."
  • 108 to 1016 − 1 are divided before the 8th-last digit and named "foo myllion bar", and a semicolon separates the digits. So 1,0002;0003,0004 is "one myriad two myllion, three myriad four."
  • 1016 to 1032 − 1 are divided before the 16th-last digit and named "foo byllion bar", and a colon separates the digits. So 12:0003,0004;0506,7089 is "twelve byllion, three myriad four myllion, five hundred six myriad seventy hundred eighty-nine."
  • etc.
Each new number name is the square of the previous one — therefore, each new name covers twice as many digits. Knuth continues borrowing the traditional names changing "illion" to "yllion" on each one.
Abstractly, then, "one n-yllion" is. "One trigintyllion" would have 232 + 1, or 42;9496,7297, or nearly forty-three myllion digits. Better yet, "one centyllion" would have 2102 + 1, or 507,0602;4009,1291:7605,9868;1282,1505, or about 1/20 of a tryllion digits, whereas a conventional "centillion" has only 304 digits.
The corresponding Chinese "long scale" numerals are given, with the traditional form listed before the simplified form. Same numerals are used in the Ancient Greek numeral system, and also the Chinese "short scale", "myriad scale", and "mid scale". Today these Chinese numerals are still in use, but are used in their "myriad scale" values, which is also used in Japanese and in Korean. For a more extensive table, see Myriad system.
ValueNameNotationStandard English name Ancient GreekChinese Pīnyīn Jyutping Pe̍h-ōe-jī
100One1Oneεἷς jat1it/chit
101Ten10Tenδέκα shísap6si̍p/cha̍p
102One hundred100One hundredἑκατόν bǎibaak3pah
103Ten hundred1000One thousandχίλιοι qiāncin1chhian
104One myriad1,0000Ten thousandμύριοι 萬, 万wànmaan6bān
105Ten myriad10,0000One hundred thousandδεκάκις μύριοι 十萬, 十万shíwànsap6 maan6si̍p/cha̍p bān
106One hundred myriad100,0000One millionἑκατοντάκις μύριοι 百萬, 百万bǎiwànbaak3 maan6pah bān
107Ten hundred myriad1000,0000Ten millionχιλιάκις μύριοι 千萬, 千万qiānwàncin1 maan6chhian bān
108One myllion1;0000,0000One hundred millionμυριάκις μύριοι 億, 亿jik1ek
109Ten myllion10;0000,0000One billionδεκάκις μυριάκις μύριοι 十億, 十亿shíyìsap6 jik1si̍p/cha̍p ek
1010One hundred myllion100;0000,0000Ten billionἑκατοντάκις μυριάκις μύριοι 百億, 百亿bǎiyìbaak3 jik1pah ek
1011Ten hundred myllion1000;0000,0000One hundred billionχῑλῐάκῐς μυριάκις μύριοι 千億, 千亿qiānyìcin1 jik1chhian ek
1012One myriad myllion1,0000;0000,0000One trillionμυριάκις μυριάκις μύριοι 萬億, 万亿wànyìmaan6 jik1bān ek
1013Ten myriad myllion10,0000;0000,0000Ten trillionδεκάκις μυριάκις μυριάκις μύριοι 十萬億, 十万亿shíwànyìsap6 maan6 jik1si̍p/cha̍p bān ek
1014One hundred myriad myllion100,0000;0000,0000One hundred trillionἑκατοντάκις μυριάκις μυριάκις μύριοι 百萬億, 百万亿bǎiwànyìbaak3 maan6 jik1pah bān ek
1015Ten hundred myriad myllion1000,0000;0000,0000One quadrillionχιλιάκις μυριάκις μυριάκις μύριοι 千萬億, 千万亿qiānwànyìcin1 maan6 jik1chhian bān ek
1016One byllion1:0000,0000;0000,0000Ten quadrillionμυριάκις μυριάκις μυριάκις μύριοι zhàosiu6tiāu
1024One myllion byllion1;0000,0000:0000,0000;0000,0000One septillionμυριάκις μυριάκις μυριάκις μυριάκις μυριάκις μύριοι 億兆, 亿兆yìzhàojik1 siu6ek tiāu
1032One tryllion1'0000,0000;0000,0000:0000,0000;0000,0000One hundred nonillionμυριάκις μυριάκις μυριάκις μυριάκις μυριάκις μυριάκις μυριάκις μύριοι jīngging1kiaⁿ
1064One quadryllionTen vigintilliongāigoi1kai
10128One quintyllionOne hundred unquadragintillionzi2chi
10256One sextyllionTen quattuoroctogintillionrángjoeng4liōng
10512One septyllionOne hundred novensexagintacentillion溝, 沟gōukau1kau
101024One octyllionTen quadragintatrecentillion澗, 涧jiàngaan3kán
102048One nonyllionOne hundred unoctogintasescentillionzhēngzing3chiàⁿ
104096One decyllionTen milliquattuorsexagintatrecentillion載, 载zàizoi3chài

Latin- prefix

In order to construct names of the form n-yllion for large values of n, Knuth appends the prefix "latin-" to the name of n without spaces and uses that as the prefix for n. For example, the number "latintwohundredyllion" corresponds to n = 200, and hence to the number.

Negative powers

To refer to small quantities with this system, the suffix -th is used.
For instance, is a myriadth.
is a ''vigintyllionth.''