Steganography


Steganography is the practice of representing information within another message or physical object, in such a manner that the presence of the concealed information would not be evident to an unsuspecting person's examination. In computing/electronic contexts, a computer file, message, image, or video is concealed within another file, message, image, or video. Generally, the hidden messages appear to be something else: images, articles, shopping lists, or some other cover text. For example, the hidden message may be in invisible ink between the visible lines of a private letter. Some implementations of steganography that lack a formal shared secret are forms of security through obscurity, while key-dependent steganographic schemes try to adhere to Kerckhoffs's principle.
The word steganography comes from Greek steganographia, which combines the words steganós, meaning "covered or concealed", and -graphia meaning "writing". The first recorded use of the term was in 1499 by Johannes Trithemius in his Steganographia, a treatise on cryptography and steganography, disguised as a book on magic.
The advantage of steganography over cryptography alone is that the intended secret message does not attract attention to itself as an object of scrutiny. Plainly visible encrypted messages, no matter how unbreakable they are, arouse interest and may in themselves be incriminating in countries in which encryption is illegal. Whereas cryptography is the practice of protecting the contents of a message alone, steganography is concerned with concealing both the fact that a secret message is being sent and its contents.
Steganography includes the concealment of information within computer files. In digital steganography, electronic communications may include steganographic coding inside a transport layer, such as a document file, image file, program, or protocol. Media files are ideal for steganographic transmission because of their large size. For example, a sender might start with an innocuous image file and adjust the color of every hundredth pixel to correspond to a letter in the alphabet. The change is so subtle that someone who is not looking for it is unlikely to notice the change.

History

The first recorded uses of steganography can be traced back to 440 BC in Greece, when Herodotus mentions two examples in his Histories. Histiaeus sent a message to his vassal, Aristagoras, by shaving the head of his most trusted servant, "marking" the message onto his scalp, then sending him on his way once his hair had regrown, with the instruction, "When thou art come to Miletus, bid Aristagoras shave thy head, and look thereon." Additionally, Demaratus sent a warning about a forthcoming attack to Greece by writing it directly on the wooden backing of a wax tablet before applying its beeswax surface. Wax tablets were in common use then as reusable writing surfaces, sometimes used for shorthand.
In his work Polygraphiae, Johannes Trithemius developed his Ave Maria cipher that can hide information in a Latin praise of God. "Auctor sapientissimus conseruans angelica deferat nobis charitas potentissimi creatoris", for example, contains the concealed word VICIPEDIA.

Techniques

Numerous techniques throughout history have been developed to embed a message within another medium.

Physical

Placing the message in a physical item has been widely used for centuries. Some notable examples include invisible ink on paper, writing a message in Morse code on yarn worn by a courier, microdots, or using a music cipher to hide messages as musical notes in sheet music.

Social steganography

In communities with social or government taboos or censorship, people use cultural steganography—hiding messages in idiom, pop culture references, and other messages they share publicly and assume are monitored. This relies on social context to make the underlying messages visible only to certain readers. Examples include:
  • Hiding a message in the title and context of a shared video or image.
  • Watermelon as a Palestinian symbol
  • Misspelling names or words that are popular in the media in a given week, to suggest an alternative meaning.
  • Hiding a picture that can be traced by using Paint or any other drawing tool.

    Digital messages

Since the dawn of computers, techniques have been developed to embed messages in digital cover mediums. The message to conceal is often encrypted, then used to overwrite part of a much larger block of encrypted data or a block of random data.
Examples of this include changing pixels in image or sound files, properties of digital text such as spacing and font choice, chaffing and winnowing, mimic functions, modifying the echo of a sound file., and including data in ignored sections of a file.

Steganography in streaming media

Since the era of evolving network applications, steganography research has shifted from image steganography to steganography in streaming media such as Voice over Internet Protocol.
In 2003, Giannoula et al. developed a data hiding technique leading to compressed forms of source video signals on a frame-by-frame basis.
In 2005, Dittmann et al. studied steganography and watermarking of multimedia contents such as VoIP.
In 2008, Yongfeng Huang and Shanyu Tang presented a novel approach to information hiding in low bit-rate VoIP speech stream, and their published work on steganography is the first-ever effort to improve the codebook partition by using Graph theory along with Quantization Index Modulation in low bit-rate streaming media.
In 2011 and 2012, Yongfeng Huang and Shanyu Tang devised new steganographic algorithms that use codec parameters as cover object to realise real-time covert VoIP steganography. Their findings were published in IEEE Transactions on Information Forensics and Security.
In 2024, Cheddad & Cheddad proposed a new framework for reconstructing lost or corrupted audio signals using a combination of machine learning techniques and latent information. The main idea of their paper is to enhance audio signal reconstruction by fusing steganography, halftoning, and state-of-the-art shallow and deep learning methods. This combination of steganography, halftoning, and machine learning for audio signal reconstruction may inspire further research in optimizing this approach or applying it to other domains, such as image reconstruction.

Adaptive steganography

Adaptive steganography is a technique for concealing information within digital media by tailoring the embedding process to the specific features of the cover medium. An example of this approach is demonstrated in the work. Their method develops a skin tone detection algorithm, capable of identifying facial features, which is then applied to adaptive steganography. By incorporating face rotation into their approach, the technique aims to enhance its adaptivity to conceal information in a manner that is both less detectable and more robust across various facial orientations within images. This strategy can potentially improve the efficacy of information hiding in both static images and video content.

Cyber-physical systems/Internet of Things

Academic work since 2012 demonstrated the feasibility of steganography for cyber-physical systems /the Internet of Things. Some techniques of CPS/IoT steganography overlap with network steganography, i.e. hiding data in communication protocols used in CPS/the IoT. However, specific techniques hide data in CPS components. For instance, data can be stored in unused registers of IoT/CPS components and in the states of IoT/CPS actuators.

Printed

Digital steganography output may be in the form of printed documents. A message, the plaintext, may be first encrypted by traditional means, producing a ciphertext. Then, an innocuous cover text is modified in some way so as to contain the ciphertext, resulting in the stegotext. For example, the letter size, spacing, typeface, or other characteristics of a cover text can be manipulated to carry the hidden message. Only a recipient who knows the technique used can recover the message and then decrypt it. Francis Bacon developed Bacon's cipher as such a technique.
The ciphertext produced by most digital steganography methods, however, is not printable. Traditional digital methods rely on perturbing noise in the channel file to hide the message, and as such, the channel file must be transmitted to the recipient with no additional noise from the transmission. Printing introduces much noise in the ciphertext, generally rendering the message unrecoverable. There are techniques that address this limitation, one notable example being ASCII Art Steganography.
Although not classic steganography, some types of modern color laser printers integrate the model, serial number, and timestamps on each printout for traceability reasons using a dot-matrix code made of small, yellow dots not recognizable to the naked eye.

Network

In 2015, a taxonomy of 109 network hiding methods was presented by Steffen Wendzel, Sebastian Zander et al. that summarized core concepts used in network steganography research. The taxonomy was developed further in recent years by several publications and authors and adjusted to new domains, such as CPS steganography.
In 1977, Kent concisely described the potential for covert channel signaling in general network communication protocols, even if the traffic is encrypted in "Encryption-Based Protection for Interactive User/Computer Communication," Proceedings of the Fifth Data Communications Symposium, September 1977.
In 1987, Girling first studied covert channels on a local area network, identified and realised three obvious covert channels, and his research paper entitled “Covert channels in LAN’s” published in IEEE Transactions on Software Engineering, vol. SE-13 of 2, in February 1987.
In 1989, Wolf implemented covert channels in LAN protocols, e.g. using the reserved fields, pad fields, and undefined fields in the TCP/IP protocol.
In 1997, Rowland used the IP identification field, the TCP initial sequence number and acknowledge sequence number fields in TCP/IP headers to build covert channels.
In 2002, Kamran Ahsan made an excellent summary of research on network steganography.
In 2005, Steven J. Murdoch and Stephen Lewis contributed a chapter entitled "Embedding Covert Channels into TCP/IP" in the "Information Hiding" book published by Springer.
All information hiding techniques that may be used to exchange steganograms in telecommunication networks can be classified under the general term of network steganography. This nomenclature was originally introduced by Krzysztof Szczypiorski in 2003. Contrary to typical steganographic methods that use digital media to hide data, network steganography uses communication protocols' control elements and their intrinsic functionality. As a result, such methods can be harder to detect and eliminate.
Typical network steganography methods involve modification of the properties of a single network protocol. Such modification can be applied to the protocol data unit, to the time relations between the exchanged PDUs, or both.
Moreover, it is feasible to utilize the relation between two or more different network protocols to enable secret communication. These applications fall under the term inter-protocol steganography. Alternatively, multiple network protocols can be used simultaneously to transfer hidden information and so-called control protocols can be embedded into steganographic communications to extend their capabilities, e.g. to allow dynamic overlay routing or the switching of utilized hiding methods and network protocols.
Network steganography covers a broad spectrum of techniques, which include, among others:
  • Steganophony – the concealment of messages in Voice-over-IP conversations, e.g. the employment of delayed or corrupted packets that would normally be ignored by the receiver, or, alternatively, hiding information in unused header fields.
  • WLAN Steganography – transmission of steganograms in Wireless Local Area Networks. A practical example of WLAN Steganography is the HICCUPS system