Spatial voting
In political science and social choice theory, the spatial 'model of voting, also known as the Hotelling–Downs model', is a mathematical model of voting behavior. It describes voters and candidates as varying along one or more axes, where each axis represents an attribute of the candidate that voters care about. Voters are modeled as having an ideal point in this space and preferring candidates closer to this point over those who are further away; these kinds of preferences are called single-peaked.
The most common example of a spatial model is a political spectrum or compass, such as the traditional left-right axis, but issue spaces can be more complex. For example, a study of German voters found at least four dimensions were required to adequately represent all political parties.
Besides ideology, a dimension can represent any attribute of the candidates, such as their views on one particular issue. It can also represent non-ideological properties of the candidates, such as their age, experience, or health.
Accuracy
A study of three-candidate elections analyzed 12 different models of voter behavior, including several variations of the impartial culture model, and found the spatial model to be the most accurate to real-world ranked-ballot election data. A previous study by the same authors had found similar results, comparing 6 different models to the ANES data.A study of evaluative voting methods developed several models for generating rated ballots and recommended the spatial model as the most realistic.