Second-generation biofuels


Second-generation biofuels, also known as advanced biofuels, are fuels that can be manufactured from various types of non-food biomass. Biomass in this context means plant materials and animal waste used especially as a source of fuel.
First-generation biofuels are made from sugar-starch feedstocks and edible oil feedstocks , which are generally converted into bioethanol and biodiesel, respectively.
Second-generation biofuels are made from different feedstocks and therefore may require different technology to extract useful energy from them. Second generation feedstocks include lignocellulosic biomass or woody crops, agricultural residues or waste, as well as dedicated non-food energy crops grown on marginal land unsuitable for food production.
The term second-generation biofuels is used loosely to describe both the 'advanced' technology used to process feedstocks into biofuel, but also the use of non-food crops, biomass and wastes as feedstocks in 'standard' biofuels processing technologies if suitable. This causes some considerable confusion. Therefore it is important to distinguish between second-generation feedstocks and second-generation biofuel processing technologies.
The development of second-generation biofuels has seen a stimulus since the food vs. fuel dilemma regarding the risk of diverting farmland or crops for biofuels production to the detriment of food supply. The biofuel and food price debate involves wide-ranging views, and is a long-standing, controversial one in the literature.

Introduction

Second-generation biofuel technologies have been developed to enable the use of non-food biofuel feedstocks because of concerns to food security caused by the use of food crops for the production of first-generation biofuels. The diversion of edible food biomass to the production of biofuels could theoretically result in competition with food and land uses for food crops.
First-generation bioethanol is produced by fermenting plant-derived sugars to ethanol, using a similar process to that used in beer and wine-making. This requires the use of food and fodder crops, such as sugar cane, corn, wheat, and sugar beet. The concern is that if these food crops are used for biofuel production that food prices could rise and shortages might be experienced in some countries. Corn, wheat, and sugar beet can also require high agricultural inputs in the form of fertilizers, which limit the greenhouse gas reductions that can be achieved. Biodiesel produced by transesterification from rapeseed oil, palm oil, or other plant oils is also considered a first-generation biofuel.
The goal of second-generation biofuel processes is to extend the amount of biofuel that can be produced sustainably by using biomass consisting of the residual non-food parts of current crops, such as stems, leaves and husks that are left behind once the food crop has been extracted, as well as other crops that are not used for food purposes, such as switchgrass, grass, jatropha, whole crop maize, miscanthus and cereals that bear little grain, and also industry waste such as woodchips, skins and pulp from fruit pressing, etc. However, its production can serve as an obstacle because it's viewed as not cost-effective as well as modern technology being insufficient for its continual creation.
The problem that second-generation biofuel processes are addressing is to extract useful feedstocks from this woody or fibrous biomass, which is predominantly composed of plant cell walls. In all vascular plants the useful sugars of the cell wall are bound within the complex carbohydrates hemicellulose and cellulose, but made inaccessible for direct use by the phenolic polymer lignin. Lignocellulosic ethanol is made by extracting sugar molecules from the carbohydrates using enzymes, steam heating, or other pre-treatments. These sugars can then be fermented to produce ethanol in the same way as first-generation bioethanol production. The by-product of this process is lignin. Lignin can be burned as a carbon neutral fuel to produce heat and power for the processing plant and possibly for surrounding homes and businesses. Thermochemical processes in hydrothermal media can produce liquid oily products from a wide range of feedstock that has a potential to replace or augment fuels. However, these liquid products fall short of diesel or biodiesel standards. Upgrading liquefaction products through one or many physical or chemical processes may improve properties for use as fuel.

Second-generation technology

The following subsections describe the main second-generation routes currently under development.

Thermochemical routes

Carbon-based materials can be heated at high temperatures in the absence or presence of oxygen, air and/or steam.
These thermochemical processes yield a mixture of gases including hydrogen, carbon monoxide, carbon dioxide, methane and other hydrocarbons, and water. Pyrolysis also produces a solid char. The gas can be fermented or chemically synthesised into a range of fuels, including ethanol, synthetic diesel, synthetic gasoline or jet fuel.
There are also lower temperature processes in the region of 150–374 °C, that produce sugars by decomposing the biomass in water with or without additives.

Gasification

Gasification technologies are well established for conventional feedstocks such as coal and crude oil. Second-generation gasification technologies include gasification of forest and agricultural residues, waste wood, energy crops and black liquor. Output is normally syngas for further synthesis to e.g. Fischer–Tropsch products including diesel fuel, biomethanol, BioDME, gasoline via catalytic conversion of dimethyl ether, or biomethane. Syngas can also be used in heat production and for generation of mechanical and electrical power via gas motors or gas turbines.

Pyrolysis

Pyrolysis is a well established technique for decomposition of organic material at elevated temperatures in the absence of oxygen. In second-generation biofuels applications forest and agricultural residues, wood waste and energy crops can be used as feedstock to produce e.g. bio-oil for fuel oil applications. Bio-oil typically requires significant additional treatment to render it suitable as a refinery feedstock to replace crude oil.

Torrefaction

Torrefaction is a form of [|pyrolysis] at temperatures typically ranging between 200–320 °C. Feedstocks and output are the same as for pyrolysis.

Hydrothermal liquefaction

Hydrothermal liquefaction is a process similar to pyrolysis that can process wet materials. The process is typically at moderate temperatures up to 400 °C and higher than atmospheric pressures. The capability to handle a wide range of materials make hydrothermal liquefaction viable for producing fuel and chemical production feedstock.

Biochemical routes

Chemical and biological processes that are currently used in other applications are being adapted for second-generation biofuels. Biochemical processes typically employ pre-treatment to accelerate the hydrolysis process, which separates out the lignin, hemicellulose and cellulose. Once these ingredients are separated, the cellulose fractions can be fermented into alcohols.
Feedstocks are energy crops, agricultural and forest residues, food industry and municipal biowaste and other biomass containing sugars. Products include alcohols and other hydrocarbons for transportation use.

Types of biofuel

The following second-generation biofuels are under development, although most or all of these biofuels are synthesized from intermediary products such as syngas using methods that are identical in processes involving conventional feedstocks, first-generation and second-generation biofuels. The distinguishing feature is the technology involved in producing the intermediary product, rather than the ultimate off-take.
A process producing liquid fuels from gas is called a gas-to-liquid process. When biomass is the source of the gas production the process is also referred to as biomass-to-liquids.

From syngas using catalysis

  • Biomethanol can be used in methanol motors or blended with petrol up to 10–20% without any infrastructure changes.
  • BioDME can be produced from Biomethanol using catalytic dehydration or it can be produced directly from syngas using direct DME synthesis. DME can be used in the compression ignition engine.
  • Bio-derived gasoline can be produced from DME via high-pressure catalytic condensation reaction. Bio-derived gasoline is chemically indistinguishable from petroleum-derived gasoline and thus can be blended into the gasoline pool.
  • Biohydrogen can be used in fuel cells to produce electricity.
  • Mixed Alcohols. Mixed alcohols are produced from syngas with several classes of catalysts. Some have employed catalysts similar to those used for methanol. Molybdenum sulfide catalysts were discovered at Dow Chemical and have received considerable attention. Addition of cobalt sulfide to the catalyst formulation was shown to enhance performance. Molybdenum sulfide catalysts have been well studied but have yet to find widespread use. These catalysts have been a focus of efforts at the U.S. Department of Energy's Biomass Program in the Thermochemical Platform. Noble metal catalysts have also been shown to produce mixed alcohols. Most R&D in this area is concentrated in producing mostly ethanol. However, some fuels are marketed as mixed alcohols Mixed alcohols are superior to pure methanol or ethanol, in that the higher alcohols have higher energy content. Also, when blending, the higher alcohols increase compatibility of gasoline and ethanol, which increases water tolerance and decreases evaporative emissions. In addition, higher alcohols have also lower heat of vaporization than ethanol, which is important for cold starts.
  • Biomethane via the Sabatier reaction