Evolution of the horse
The evolution of the horse, a mammal of the family Equidae, occurred over a geologic time scale of 50 million years, transforming the small, dog-sized, forest-dwelling Eohippus into the large, single-toed, modern-day horse. Paleozoologists have been able to piece together a more complete outline of the evolutionary lineage of the modern horse than of any other animal. Much of this evolution took place in North America, where horses originated but became extinct about 10,000 years ago, before being reintroduced in the 15th century.
The horse belongs to the order Perissodactyla, the members of which share hooved feet and an odd number of toes on each foot, as well as mobile upper lips and a similar tooth structure. This means that horses share a common ancestry with tapirs and rhinoceroses. The perissodactyls arose in the late Paleocene, less than 10 million years after the Cretaceous–Paleogene extinction event. This group of animals appears to have been originally specialized for life in tropical forests, but whereas tapirs and, to some extent, rhinoceroses, retained their jungle specializations, modern horses are adapted to life in the climatic conditions of the steppes, which are drier and much harsher than forests or jungles. Other species of Equus are adapted to a variety of intermediate conditions.
The early ancestors of the modern horse walked on several spread-out toes, an accommodation to life spent walking on the soft, moist ground of primeval forests. As grass species began to appear and flourish, the equids' diets shifted from foliage to silicate-rich grasses; the increased wear on teeth selected for increases in the size and durability of teeth. At the same time, as the steppes began to appear, selection favored increase in speed to outrun predators. This ability was attained by lengthening of limbs and the lifting of some toes from the ground in such a way that the weight of the body was gradually placed on one of the longest toes, the third.
History of research
s have been known since prehistory from central Asia to Europe, with domestic horses and other equids being distributed more widely in the Old World, but no horses or equids of any type were found in the New World when European explorers reached the Americas. When the Spanish colonists brought domestic horses from Europe, beginning in 1493, escaped horses quickly established large feral herds. In the 1760s, the early naturalist Buffon suggested this was an indication of inferiority of the New World fauna, but later reconsidered this idea. William Clark's 1807 expedition to Big Bone Lick found "leg and foot bones of the Horses", which were included with other fossils sent to Thomas Jefferson and evaluated by the anatomist Caspar Wistar, but neither commented on the significance of this find.The first Old World equid fossil was found in the gypsum quarries in Montmartre, Paris, in the 1820s. The tooth was sent to the Paris Conservatory, where it was identified by Georges Cuvier, who identified it as a browsing equine related to the tapir. His sketch of the entire animal matched later skeletons found at the site.
During the Beagle survey expedition, the young naturalist Charles Darwin had remarkable success with fossil hunting in Patagonia. On 10 October 1833, at Santa Fe, Argentina, he was "filled with astonishment" when he found a horse's tooth in the same stratum as fossil giant armadillos, and wondered if it might have been washed down from a later layer, but concluded this was "not very probable". After the expedition returned in 1836, the anatomist Richard Owen confirmed the tooth was from an extinct species, which he subsequently named Equus curvidens, and remarked, "This evidence of the former existence of a genus, which, as regards South America, had become extinct, and has a second time been introduced into that Continent, is not one of the least interesting fruits of Mr. Darwin's palæontological discoveries."
In 1848, a study On the fossil horses of America by Joseph Leidy systematically examined Pleistocene horse fossils from various collections, including that of the Academy of Natural Sciences, and concluded at least two ancient horse species had existed in North America: Equus curvidens and another, which he named Equus americanus. A decade later, however, he found the latter name had already been taken and renamed it Equus complicatus. In the same year, he visited Europe and was introduced by Owen to Darwin.
File:Eurohippus parvulus.jpg|thumb|left|Restoration of Eurohippus parvulus, a mid- to late Eocene equid of Europe
The original sequence of species believed to have evolved into the horse was based on fossils discovered in North America in 1879 by paleontologist Othniel Charles Marsh. The sequence, from Eohippus to the modern horse, was popularized by Thomas Huxley and became one of the most widely known examples of a clear evolutionary progression. The horse's evolutionary lineage became a common feature of biology textbooks, and the sequence of transitional fossils was assembled by the American Museum of Natural History into an exhibit that emphasized the gradual, "straight-line" evolution of the horse.
Since then, as the number of equid fossils has increased, the actual evolutionary progression from Eohippus to Equus has been discovered to be much more complex and multibranched than was initially supposed. The straight, direct progression from the former to the latter has been replaced by a more elaborate model with numerous branches in different directions, of which the modern horse is only one of many. George Gaylord Simpson in 1951 first recognized that the modern horse was not the "goal" of the entire lineage of equids, but is simply the only genus of the many horse lineages to survive.
Detailed fossil information on the distribution and rate of change of new equid species has also revealed that the progression between species was not as smooth and consistent as was once believed. Although some transitions, such as that of Dinohippus to Equus, were indeed gradual progressions, a number of others, such as that of Epihippus to Mesohippus, were relatively abrupt in geologic time, taking place over only a few million years. Both anagenesis and cladogenesis occurred, and many species coexisted with "ancestor" species at various times. The change in equids' traits was also not always a "straight line" from Eohippus to Equus: some traits reversed themselves at various points in the evolution of new equid species, such as size and the presence of facial fossae, and only in retrospect can certain evolutionary trends be recognized.
Before odd-toed ungulates
Phenacodontidae
is the most recent family in the order Condylarthra believed to be ancestral to the odd-toed ungulates. It contains the genera Almogaver, Copecion, Ectocion, Eodesmatodon, Meniscotherium, Ordathspidotherium, Phenacodus and Pleuraspidotherium. The family lived from the Early Paleocene to the Middle Eocene in Europe and were about the size of a sheep, with tails making slightly less than half of the length of their bodies and, unlike their ancestors, good running skills.Eocene and Oligocene: early equids
''Eohippus''
Eohippus appeared in the Ypresian, about 52 mya. It was an animal approximately the size of a fox, with a relatively short head and neck and a springy, arched back. It had 44 low-crowned teeth, in the typical arrangement of an omnivorous, browsing mammal: three incisors, one canine, four premolars, and three molars on each side of the jaw. Its molars were uneven, dull, and bumpy, and used primarily for grinding foliage. The cusps of the molars were slightly connected in low crests. Eohippus browsed on soft foliage and fruit, probably scampering between thickets in the mode of a modern muntjac. It had a small brain, and possessed especially small frontal lobes.File:Hyracotherium.jpg|thumb|350px|Eohippus, with left forefoot and tooth detailed
Its limbs were long relative to its body, already showing the beginnings of adaptations for running. However, all of the major leg bones were unfused, leaving the legs flexible and rotatable. Its wrist and hock joints were low to the ground. The forelimbs had developed five toes, of which four were equipped with small proto-hooves; the large fifth "toe-thumb" was off the ground. The hind limbs had small hooves on three out of the five toes, whereas the vestigial first and fifth toes did not touch the ground. Its feet were padded, much like a dog's, but with the small hooves in place of claws.
For a span of about 20 million years, Eohippus thrived with few significant evolutionary changes. The most significant change was in the teeth, which began to adapt to its changing diet, as these early Equidae shifted from a mixed diet of fruits and foliage to one focused increasingly on browsing foods. During the Eocene, an Eohippus species branched out into various new types of Equidae. Thousands of complete, fossilized skeletons of these animals have been found in the Eocene layers of North American strata, mainly in the Wind River basin in Wyoming. Similar fossils have also been discovered in Europe, such as Propalaeotherium.
''Orohippus''
Approximately 50 million years ago, in the early-to-middle Eocene, Eohippus smoothly transitioned into Orohippus through a gradual series of changes. Although its name means "mountain horse", Orohippus was not a true horse and did not live in the mountains. It resembled Eohippus in size, but had a slimmer body, an elongated head, slimmer forelimbs, and longer hind legs, all of which are characteristics of a good jumper. Although Orohippus was still pad-footed, the vestigial outer toes of Eohippus were not present in Orohippus; there were four toes on each fore leg, and three on each hind leg.The most dramatic change between Eohippus and Orohippus was in the teeth: the first of the premolar teeth was dwarfed, the last premolar shifted in shape and function into a molar, and the crests on the teeth became more pronounced. Both of these factors increased the grinding ability of the teeth of Orohippus; the change suggest selection imposed by increased toughness of Orohippus plant diet.