OSI model
The Open Systems Interconnection 'model' is a reference model developed by the International Organization for Standardization that "provides a common basis for the coordination of standards development for the purpose of systems interconnection."
In the OSI reference model, the components of a communication system are distinguished in seven abstraction layers: Physical, Data Link, Network, Transport, Session, Presentation, and Application.
The model describes communications from the physical implementation of transmitting bits across a transmission medium to the highest-level representation of data of a distributed application. Each layer has well-defined functions and semantics and serves a class of functionality to the layer above it and is served by the layer below it. Established, well-known communication protocols are decomposed in software development into the model's hierarchy of function calls.
The Internet protocol suite as defined in and is a model of networking developed contemporarily to the OSI model, and was funded primarily by the U.S. Department of Defense. It was the foundation for the development of the Internet. It assumed the presence of generic physical links and focused primarily on the software layers of communication, with a similar but much less rigorous structure than the OSI model.
In comparison, several networking models have sought to create an intellectual framework for clarifying networking concepts and activities, but none have been as successful as the OSI reference model in becoming the standard model for discussing and teaching networking in the field of information technology. The model allows transparent communication through equivalent exchange of protocol data units between two parties, through what is known as peer-to-peer networking. As a result, the OSI reference model has not only become an important piece among professionals and non-professionals alike, but also in all networking between one or many parties, due in large part to its commonly accepted user-friendly framework.
History
The development of the OSI model started in the late 1970s to support the emergence of the diverse computer networking methods that were competing for application in the large national networking efforts in the world. In the 1980s, the model became a working product of the Open Systems Interconnection group at the International Organization for Standardization. While attempting to provide a comprehensive description of networking, the model failed to garner reliance during the design of the Internet, which is reflected in the less prescriptive Internet Protocol Suite, principally sponsored under the auspices of the Internet Engineering Task Force.In the early- and mid-1970s, networking was largely either government-sponsored or vendor-developed with proprietary standards, such as IBM's Systems Network Architecture and Digital Equipment Corporation's DECnet. Public data networks were only just beginning to emerge, and these began to use the X.25 standard in the late 1970s.
The Experimental Packet Switched System in the UK –1975 identified the need for defining higher-level protocols. The UK National Computing Centre publication, Why Distributed Computing, which came from considerable research into future configurations for computer systems, resulted in the UK presenting the case for an international standards committee to cover this area at the ISO meeting in Sydney in March 1977.
Beginning in 1977, the ISO initiated a program to develop general standards and methods of networking. A similar process evolved at the International Telegraph and Telephone Consultative Committee. Both bodies developed documents that defined similar networking models. The British Department of Trade and Industry acted as the secretariat, and universities in the United Kingdom developed prototypes of the standards.
The OSI model was first defined in raw form in Washington, D.C., in February 1978 by French software engineer Hubert Zimmermann, and the refined but still draft standard was published by the ISO in 1980.
The drafters of the reference model had to contend with many competing priorities and interests. The rate of technological change made it necessary to define standards that new systems could converge to rather than standardizing procedures after the fact; the reverse of the traditional approach to developing standards. Although not a standard itself, it was a framework in which future standards could be defined.
In May 1983, the CCITT and ISO documents were merged to form The Basic Reference Model for Open Systems Interconnection, usually referred to as the Open Systems Interconnection Reference Model, OSI Reference Model, or simply OSI model. It was published in 1984 by both the ISO, as standard ISO 7498, and the renamed CCITT as standard X.200.
OSI had two major components: an abstract model of networking, called the Basic Reference Model or seven-layer model, and a set of specific protocols. The OSI reference model was a major advance in the standardisation of network concepts. It promoted the idea of a consistent model of protocol layers, defining interoperability between network devices and software.
The concept of a seven-layer model was provided by the work of Charles Bachman at Honeywell Information Systems. Various aspects of OSI design evolved from experiences with the NPL network, ARPANET, CYCLADES, EIN, and the International Network Working Group. In this model, a networking system was divided into layers. Within each layer, one or more entities implement its functionality. Each entity interacted directly only with the layer immediately beneath it and provided facilities for use by the layer above it.
The OSI standards documents are available from the ITU-T as the X.200 series of recommendations. Some of the protocol specifications were also available as part of the ITU-T X series. The equivalent ISO/IEC standards for the OSI model were available from ISO. Not all are free of charge.
OSI was an industry effort, attempting to get industry participants to agree on common network standards to provide multi-vendor interoperability. It was common for large networks to support multiple network protocol suites, with many devices unable to interoperate with other devices because of a lack of common protocols. For a period in the late 1980s and early 1990s, engineers, organizations and nations became polarized over the issue of which standard, the OSI model or the Internet protocol suite, would result in the best and most robust computer networks. However, while OSI developed its networking standards in the late 1980s, TCP/IP came into widespread use on multi-vendor networks for internetworking.
The OSI model is still used as a reference for teaching and documentation; however, the OSI protocols originally conceived for the model did not gain popularity. Some engineers argue the OSI reference model is still relevant to cloud computing. Others say the original OSI model does not fit today's networking protocols and have suggested instead a simplified approach.
Definitions
s enable an entity in one host to interact with a corresponding entity at the same layer in another host. Service definitions, like the OSI model, abstractly describe the functionality provided to a layer N by a layer N−1, where N is one of the seven layers of protocols operating in the local host.At each level N, two entities at the communicating devices exchange protocol data units by means of a layer N protocol. Each PDU contains a payload, called the service data unit, along with protocol-related headers or footers.
Data processing by two communicating OSI-compatible devices proceeds as follows:
- The data to be transmitted is composed at the topmost layer of the transmitting device into a protocol data unit.
- The PDU is passed to layer N−1, where it is known as the service data unit.
- At layer N−1 the SDU is concatenated with a header, a footer, or both, producing a layer N−1 PDU. It is then passed to layer N−2.
- The process continues until reaching the lowermost level, from which the data is transmitted to the receiving device.
- At the receiving device the data is passed from the lowest to the highest layer as a series of SDUs while being successively stripped from each layer's header or footer until reaching the topmost layer, where the last of the data is consumed.
Standards documents
- ISO/IEC 7498-1 The Basic Model
- ISO/IEC 7498-2 Security Architecture
- ISO/IEC 7498-3 Naming and addressing
- ISO/IEC 7498-4 Management framework
Layer architecture
The recommendation X.200 describes seven layers, labelled 1 to 7. Layer 1 is the lowest layer in this model.Layer 1: Physical layer
The physical layer is responsible for the transmission and reception of unstructured raw data between a device, such as a network interface controller, Ethernet hub, or network switch, and a physical transmission medium. It converts the digital bits into electrical, radio, or optical signals. Layer specifications define characteristics such as voltage levels, the timing of voltage changes, physical data rates, maximum transmission distances, modulation scheme, channel access method and physical connectors. This includes the layout of pins, voltages, line impedance, cable specifications, signal timing and frequency for wireless devices. Bit rate control is done at the physical layer and may define transmission mode as simplex, half duplex, and full duplex. The components of a physical layer can be described in terms of the network topology. Physical layer specifications are included in the specifications for the ubiquitous Bluetooth, Ethernet, and USB standards. An example of a less well-known physical layer specification would be for the CAN standard.The physical layer also specifies how encoding occurs over a physical signal, such as electrical voltage or a light pulse. For example, a 1 bit might be represented on a copper wire by the transition from a 0-volt to a 5-volt signal, whereas a 0 bit might be represented by the transition from a 5-volt to a 0-volt signal. As a result, common problems occurring at the physical layer are often related to the incorrect media termination, EMI or noise scrambling, and NICs and hubs that are misconfigured or do not work correctly.