Model of hierarchical complexity
The model of hierarchical complexity is a framework for scoring how complex a behavior is, such as verbal reasoning or other cognitive tasks. It quantifies the order of hierarchical complexity of a task based on mathematical principles of how the information is organized, in terms of information science. This model was developed by Michael Commons and Francis Richards in the early 1980s.
Overview
The model of hierarchical complexity is a formal theory and a mathematical psychology framework for scoring how complex a behavior is. Developed by Michael Lamport Commons and colleagues, it quantifies the order of hierarchical complexity of a task based on mathematical principles of how the information is organized, in terms of information science. Its forerunner was the general stage model.Behaviors that may be scored include those of individual humans or their social groupings, animals, or machines. It enables scoring the hierarchical complexity of task accomplishment in any domain. It is based on the very simple notions that higher order task actions:
- are defined in terms of the next lower ones ;
- organize the next lower actions;
- organize lower actions in a non-arbitrary way.
The MHC is a non-mentalistic model of developmental stages. It specifies 16 orders of hierarchical complexity and their corresponding stages. It is different from previous proposals about developmental stage applied to humans; instead of attributing behavioral changes across a person's age to the development of mental structures or schema, this model posits that task sequences of task behaviors form hierarchies that become increasingly complex. Because less complex tasks must be completed and practiced before more complex tasks can be acquired, this accounts for the developmental changes seen in an individual persons' performance of complex tasks. For example, a person cannot perform arithmetic until the numeral representations of numbers are learned, or a person cannot operationally multiply the sums of numbers until addition is learned. However, as much as natural intelligence helps human to understand some numbers, it does not play a complete role in multiplying large numbers without learning additions.
The creators of the MHC claim that previous theories of stage have confounded the stimulus and response in assessing stage by simply scoring responses and ignoring the task or stimulus. The MHC separates the task or stimulus from the performance. The participant's performance on a task of a given complexity represents the stage of developmental complexity.
Previous stage theories were unsatisfying to Commons and Richards because the theories did not show the existence of the stages more than describing sequential changes in human behavior. This led them to create a list of two concepts they felt a successful developmental theory should address. The two ideas they wanted to study were the hierarchical complexity of the task to be solved and the psychology, sociology, and anthropology of the task performance.
Vertical complexity of tasks performed
One major basis for this developmental theory is task analysis. The study of ideal tasks, including their instantiation in the real world, has been the basis of the branch of stimulus control called psychophysics. Tasks are defined as sequences of contingencies, each presenting stimuli and each requiring a behavior or a sequence of behaviors that must occur in some non-arbitrary fashion. The complexity of behaviors necessary to complete a task can be specified using the horizontal complexity and vertical complexity definitions described below. Behavior is examined with respect to the analytically-known complexity of the task.Tasks are quantal in nature. They are either completed correctly or not completed at all. There is no intermediate state. For this reason, the model characterizes all stages as P-hard and functionally distinct. The orders of hierarchical complexity are quantized like the electron atomic orbitals around the nucleus: each task difficulty has an order of hierarchical complexity required to complete it correctly, analogous to the atomic Slater determinant. Since tasks of a given quantified order of hierarchical complexity require actions of a given order of hierarchical complexity to perform them, the stage of the participant's task performance is equivalent to the order of complexity of the successfully completed task. The quantal feature of tasks is thus particularly instrumental in stage assessment because the scores obtained for stages are likewise discrete.
Every task contains a multitude of subtasks. When the subtasks are carried out by the participant in a required order, the task in question is successfully completed. Therefore, the model asserts that all tasks fit in some configured sequence of tasks, making it possible to precisely determine the hierarchical order of task complexity. Tasks vary in complexity in two ways: either as horizontal ; or as vertical.
Horizontal complexity
Classical information describes the number of "yes–no" questions it takes to do a task. For example, if one asked a person across the room whether a penny came up heads when they flipped it, their saying "heads" would transmit 1 bit of "horizontal" information. If there were 2 pennies, one would have to ask at least two questions, one about each penny. Hence, each additional 1-bit question would add another bit. Let us say they had a four-faced top with the faces numbered 1, 2, 3, and 4. Instead of spinning it, they tossed it against a backboard as one does with dice in a game of craps. Again, there would be 2 bits. One could ask them whether the face had an even number. If it did, one would then ask if it were a 2. Horizontal complexity, then, is the sum of bits required by just such tasks as these.Vertical complexity
Hierarchical complexity refers to the number of recursions that the coordinating actions must perform on a set of primary elements. Actions at a higher order of hierarchical complexity: are defined in terms of actions at the next lower order of hierarchical complexity; organize and transform the lower-order actions ; produce organizations of lower-order actions that are qualitatively new and not arbitrary, and cannot be accomplished by those lower-order actions alone. Once these conditions have been met, we say the higher-order action coordinates the actions of the next lower order.To illustrate how lower actions get organized into more hierarchically complex actions, let us turn to a simple example. Completing the entire operation 3 × constitutes a task requiring the distributive act. That act non-arbitrarily orders adding and multiplying to coordinate them. The distributive act is therefore one order more hierarchically complex than the acts of adding and multiplying alone; it indicates the singular proper sequence of the simpler actions. Although simply adding results in the same answer, people who can do both display a greater freedom of mental functioning. Additional layers of abstraction can be applied. Thus, the order of complexity of the task is determined through analyzing the demands of each task by breaking it down into its constituent parts.
The hierarchical complexity of a task refers to the number of concatenation operations it contains, that is, the number of recursions that the coordinating actions must perform. An order-three task has three concatenation operations. A task of order three operates on one or more tasks of vertical order two and a task of order two operates on one or more tasks of vertical order one.
Stages of development
describe human organismic and/or technological evolution as systems that move through a pattern of distinct stages over time. Here development is described formally in terms of the model of hierarchical complexity.Formal definition of stage
Since actions are defined inductively, so is the function h, known as the order of the hierarchical complexity. To each action A, we wish to associate a notion of that action's hierarchical complexity, h. Given a collection of actions A and a participant S performing A, the stage of performance of S on A is the highest order of the actions in A completed successfully at least once, i.e., it is: stage = max. Thus, the notion of stage is discontinuous, having the same transitional gaps as the orders of hierarchical complexity. This is in accordance with previous definitions.Because MHC stages are conceptualized in terms of the hierarchical complexity of tasks rather than in terms of mental representations, the highest stage represents successful performances on the most hierarchically complex tasks rather than intellectual maturity.
Stages of hierarchical complexity
The following table gives descriptions of each stage in the MHC.| Order or stage | What they do | How they do it | End result |
| 0 – calculatory | Exact computation only, no generalization | Human-made programs manipulate 0, 1, not 2 or 3. | Minimal human result. Unorganized machines act in a way analogous to this stage. |
| 1 – automatic | Engage in a single "hard-wired" action at a time, no respondent conditioning | Respond, as a simple mechanism, to a single environmental stimulus | Single celled organisms respond to a single stimulus in a way analogous to this stage |
| 2 – sensory and motor | Discriminate in a rote fashion, stimuli generalization, move | Move limbs, lips, toes, eyes, elbows, head; view objects or move | Discriminative establishing and reinforcing conditioned stimuli |
| 3 – circular sensory-motor | Form open-ended proper classes | Reach, touch, grab, shake objects, circular babble | Open ended proper classes, phonemes, archiphonemes |
| 4 – sensory-motor | Form concepts | Respond to stimuli in a class successfully and non-stochastically | Morphemes, concepts |
| 5 – nominal | Find relations among concepts | Use names for objects and other utterances as successful commands | Single words: ejaculatives & exclamations, verbs, nouns, number names, letter names |
| 6 – sentential | Imitate and acquire sequences; follow short sequential acts | Generalize match-dependent task actions; chain words | Various forms of pronouns: subject, object, possessive adjective, possessive pronoun, and reflexive for various persons |
| 7 – preoperational | Make simple deductions; follow lists of sequential acts; tell stories | Count event roughly events and objects; connect the dots; combine numbers and simple propositions | Connectives: as, when, then, why, before; products of simple operations |
| 8 – primary | Simple logical deduction and empirical rules involving time sequence; simple arithmetic | Adds, subtracts, multiplies, divides, counts, proves, does series of tasks on own | Times, places, counts acts, actors, arithmetic outcome, sequence from calculation |
| 9 – concrete | Carry out full arithmetic, form cliques, plan deals | Does long division, short division, follows complex social rules, ignores simple social rules, takes and coordinates perspective of other and self | Interrelations, social events, what happened among others, reasonable deals, history, geography |
| 10 – abstract | Discriminate variables such as stereotypes; logical quantification; | Form variables out of finite classes; make and quantify propositions | Variable time, place, act, actor, state, type; quantifiers ; categorical assertions |
| 11 – formal | Argue using empirical or logical evidence; logic is linear, 1-dimensional | Solve problems with one unknown using algebra, logic and empiricism | Relationships are formed out of variables; words: linear, logical, one-dimensional, if then, thus, therefore, because; correct scientific solutions |
| 12 – systematic | Construct multivariate systems and matrices | Coordinate more than one variable as input; consider relationships in contexts. | Events and concepts situated in a multivariate context; systems are formed out of relations; systems: legal, societal, corporate, economic, national |
| 13 – metasystematic | Construct multi-systems and metasystems out of disparate systems | Create metasystems out of systems; compare systems and perspectives; name properties of systems: e.g. homomorphic, isomorphic, complete, consistent, commensurable | Metasystems and supersystems are formed out of systems of relationships, e.g. contracts and promises |
| 14 – paradigmatic | Fit metasystems together to form new paradigms; show "incomplete" or "inconsistent" aspects of metasystems | Synthesize metasystems | Paradigms are formed out of multiple metasystems |
| 15 – cross-paradigmatic | Fit paradigms together to form new fields | Form new fields by crossing paradigms, e.g. evolutionary biology + developmental biology = evolutionary developmental biology | New fields are formed out of multiple paradigms |
| 16 – meta-cross-paradigmatic | Reflect on various properties of cross-paradigmatic operations | Explicate the dynamics of, and limitations of, cross-paradigmatic thinking | The dynamics and limitations of cross-paradigmatic thinking are explained as they are recursively enacted |