Bifurcation theory
Bifurcation theory is the mathematical study of changes in the qualitative or topological structure of a given family of curves, such as the integral curves of a family of vector fields, and the solutions of a family of differential equations. Most commonly applied to the mathematical study of dynamical systems, a bifurcation occurs when a small smooth change made to the parameter values of a system causes a sudden "qualitative" or topological change in its behavior. Bifurcations occur in both continuous systems and discrete systems.
The name "bifurcation" was first introduced by Henri Poincaré in 1885 in the first paper in mathematics showing such a behavior.
Bifurcation types
It is useful to divide bifurcations into two principal classes:- Local bifurcations, which can be analysed entirely through changes in the local stability properties of equilibria, periodic orbits or other invariant sets as parameters cross through critical thresholds.
- Global bifurcations, which often occur when larger invariant sets of the system "collide" with each other, or with equilibria of the system. They cannot be detected purely by a stability analysis of the equilibria.
Local bifurcations
The topological changes in the phase portrait of the system can be confined to arbitrarily small neighbourhoods of the bifurcating fixed points by moving the bifurcation parameter close to the bifurcation point.
More technically, consider the continuous dynamical system described by the ordinary differential equation
A local bifurcation occurs at if the Jacobian matrix has an eigenvalue with zero real part. If the eigenvalue is equal to zero, the bifurcation is a steady-state bifurcation, but if the eigenvalue is non-zero but purely imaginary, this is a Hopf bifurcation.
For discrete dynamical systems, consider the system
Then a local bifurcation occurs at if the matrix has an eigenvalue with modulus equal to one. If the eigenvalue is equal to one, the bifurcation is either a saddle-node, transcritical or pitchfork bifurcation. If the eigenvalue is equal to −1, it is a period-doubling bifurcation, and otherwise, it is a Hopf bifurcation.
Examples of local bifurcations include:
- Saddle-node bifurcation
- Transcritical bifurcation
- Pitchfork bifurcation
- Period-doubling bifurcation
- Hopf bifurcation
- Neimark–Sacker bifurcation
Global bifurcations
Examples of global bifurcations include:
- Homoclinic bifurcation in which a limit cycle collides with a saddle point. The variant above is the "small" or "type I" homoclinic bifurcation. In 2D there is also the "big" or "type II" homoclinic bifurcation in which the homoclinic orbit "traps" the other ends of the unstable and stable manifolds of the saddle. In three or more dimensions, higher codimension bifurcations can occur, producing complicated, possibly chaotic dynamics.
- Heteroclinic bifurcation in which a limit cycle collides with two or more saddle points; they involve a heteroclinic cycle. Heteroclinic bifurcations are of two types: resonance bifurcations and transverse bifurcations. Both types of bifurcation will result in the change of stability of the heteroclinic cycle. At a resonance bifurcation, the stability of the cycle changes when an algebraic condition on the eigenvalues of the equilibria in the cycle is satisfied. This is usually accompanied by the birth or death of a periodic orbit. A transverse bifurcation of a heteroclinic cycle is caused when the real part of a transverse eigenvalue of one of the equilibria in the cycle passes through zero. This will also cause a change in stability of the heteroclinic cycle.
- Infinite-period bifurcation in which a stable node and saddle point simultaneously occur on a limit cycle. As the limit of a parameter approaches a certain critical value, the speed of the oscillation slows down and the period approaches infinity. The infinite-period bifurcation occurs at this critical value. Beyond the critical value, the two fixed points emerge continuously from each other on the limit cycle to disrupt the oscillation and form two saddle points.
- Blue sky catastrophe in which a limit cycle collides with a nonhyperbolic cycle.
Codimension of a bifurcation
The codimension of a bifurcation is the number of parameters which must be varied for the bifurcation to occur. This corresponds to the codimension of the parameter set for which the bifurcation occurs within the full space of parameters. Saddle-node bifurcations and Hopf bifurcations are the only generic local bifurcations which are really codimension-one. However, transcritical and pitchfork bifurcations are also often thought of as codimension-one, because the normal forms can be written with only one parameter.An example of a well-studied codimension-two bifurcation is the Bogdanov–Takens bifurcation.