Exercise


Exercise or working out is physical activity that enhances or maintains fitness and overall health. It is performed for various reasons, including weight loss or maintenance, to aid growth and improve strength, develop muscles and the cardiovascular system, hone athletic skills, improve health, or simply for enjoyment. Many people choose to exercise outdoors where they can congregate in groups, socialize, and improve well-being as well as mental health.
In terms of health benefits, usually, 150 minutes of moderate-intensity exercise per week is recommended for reducing the risk of health problems. At the same time, even doing a small amount of exercise is healthier than doing none. Only doing an hour and a quarter of exercise could reduce the risk of early death, cardiovascular disease, stroke, and cancer.

Classification

Physical exercises are generally grouped into three types, depending on the overall effect they have on the human body:
Physical exercise can also include training that focuses on accuracy, agility, power, and speed.
Types of exercise can also be classified as dynamic or static. 'Dynamic' exercises such as steady running, tend to produce a lowering of the diastolic blood pressure during exercise, due to the improved blood flow. Conversely, static exercise can cause the systolic pressure to rise significantly, albeit transiently, during the performance of the exercise.

Health effects

Physical exercise is important for maintaining physical fitness and can contribute to maintaining a healthy weight, regulating the digestive system, building and maintaining healthy bone density, muscle strength, and joint mobility, promoting physiological well-being, reducing surgical risks, and strengthening the immune system. Some studies indicate that exercise may increase life expectancy and the overall quality of life. People who participate in moderate to high levels of physical exercise have a lower mortality rate compared to individuals who by comparison are not physically active. Moderate levels of exercise have been correlated with preventing aging by reducing inflammatory potential. The majority of the benefits from exercise are achieved with around 3500 metabolic equivalent minutes per week, with diminishing returns at higher levels of activity. For example, climbing stairs 10 minutes, vacuuming 15 minutes, gardening 20 minutes, running 20 minutes, and walking or bicycling for transportation 25 minutes on a daily basis would together achieve about 3000 MET minutes a week. A lack of physical activity causes approximately 6% of the burden of disease from coronary heart disease, 7% of type 2 diabetes, 10% of breast cancer, and 10% of colon cancer worldwide. Overall, physical inactivity causes 9% of premature mortality worldwide.
In his 2019 book The Body: A Guide for Occupants, the American-British writer Bill Bryson wrote: "If someone invented a pill that could do for us all that a moderate amount of exercise achieves, it would instantly become the most successful drug in history."

Fitness

Most people can increase fitness by increasing physical activity levels. Increases in muscle size from resistance training are primarily determined by diet and testosterone. This genetic variation in improvement from training is one of the key physiological differences between elite athletes and the larger population. There is evidence that exercising in middle age may lead to better physical ability later in life.
Early motor skills and development is also related to physical activity and performance later in life. Children who are more proficient with motor skills early on are more inclined to be physically active, and thus tend to perform well in sports and have better fitness levels. Early motor proficiency has a positive correlation to childhood physical activity and fitness levels, while less proficiency in motor skills results in a more sedentary lifestyle.
The type and intensity of physical activity performed may have an effect on a person's fitness level. There is some weak evidence that high-intensity interval training may improve a person's VO2 max slightly more than lower intensity endurance training. However, unscientific fitness methods could lead to sports injuries.

Cardiovascular system

The beneficial effect of exercise on the cardiovascular system is well documented. There is a direct correlation between physical inactivity and cardiovascular disease, and physical inactivity is an independent risk factor for the development of coronary artery disease. Low levels of physical exercise increase the risk of cardiovascular diseases mortality.
Children who participate in physical exercise experience greater loss of body fat and increased cardiovascular fitness. Studies have shown that academic stress in youth increases the risk of cardiovascular disease in later years; however, these risks can be greatly decreased with regular physical exercise.
There is a dose-response relationship between the amount of exercise performed from approximately kcal of energy expenditure per week and all-cause mortality and cardiovascular disease mortality in middle-aged and elderly men. The greatest potential for reduced mortality is seen in sedentary individuals who become moderately active.
Studies have shown that since heart disease is the leading cause of death in women, regular exercise in aging women leads to healthier cardiovascular profiles.
The most beneficial effects of physical activity on cardiovascular disease mortality can be attained through moderate-intensity activity. After a myocardial infarction, survivors who changed their lifestyle to include regular exercise had higher survival rates. Sedentary people are most at risk for mortality from cardiovascular and all other causes. According to the American Heart Association, exercise reduces the risk of cardiovascular diseases, including heart attack and stroke.
Some have suggested that increases in physical exercise might decrease healthcare costs, increase the rate of job attendance, as well as increase the amount of effort women put into their jobs.

Immune system

Although there have been hundreds of studies on physical exercise and the immune system, there is little direct evidence on its connection to illness. Epidemiological evidence suggests that moderate exercise has a beneficial effect on the human immune system; an effect which is modeled in a J curve. Moderate exercise has been associated with a 29% decreased incidence of upper respiratory tract infections, but studies of marathon runners found that their prolonged high-intensity exercise was associated with an increased risk of infection occurrence. However, another study did not find the effect. Immune cell functions are impaired following acute sessions of prolonged, high-intensity exercise, and some studies have found that athletes are at a higher risk for infections. Studies have shown that strenuous stress for long durations, such as training for a marathon, can suppress the immune system by decreasing the concentration of lymphocytes. The immune systems of athletes and nonathletes are generally similar. Athletes may have a slightly elevated natural killer cell count and cytolytic action, but these are unlikely to be clinically significant.
Vitamin C supplementation has been associated with a lower incidence of upper respiratory tract infections in marathon runners.
Biomarkers of inflammation such as C-reactive protein, which are associated with chronic diseases, are reduced in active individuals relative to sedentary individuals, and the positive effects of exercise may be due to its anti-inflammatory effects. In individuals with heart disease, exercise interventions lower blood levels of fibrinogen and C-reactive protein, an important cardiovascular risk marker. The depression in the immune system following acute bouts of exercise may be one of the mechanisms for this anti-inflammatory effect.

Cancer

A systematic review evaluated 45 studies that examined the relationship between physical activity and cancer survival rates. According to the review, " was consistent evidence from 27 observational studies that physical activity is associated with reduced all-cause, breast cancer–specific, and colon cancer–specific mortality. There is currently insufficient evidence regarding the association between physical activity and mortality for survivors of other cancers." Evidence suggests that exercise may positively affect the quality of life in cancer survivors, including factors such as anxiety, self-esteem and emotional well-being. For people with cancer undergoing active treatment, exercise may also have positive effects on health-related quality of life, such as fatigue and physical functioning. This is likely to be more pronounced with higher intensity exercise.
Exercise may contribute to a reduction of cancer-related fatigue in survivors of breast cancer. Although there is only limited scientific evidence on the subject, people with cancer cachexia are encouraged to engage in physical exercise. Due to various factors, some individuals with cancer cachexia have a limited capacity for physical exercise. Compliance with prescribed exercise is low in individuals with cachexia and clinical trials of exercise in this population often have high drop-out rates.
There is low-quality evidence for an effect of aerobic physical exercises on anxiety and serious adverse events in adults with hematological malignancies. Aerobic physical exercise may result in little to no difference in the mortality, quality of life, or physical functioning. These exercises may result in a slight reduction in depression and reduction in fatigue.