Electrodermal activity

Electrodermal activity is the property of the human body that causes continuous variation in the electrical characteristics of the skin. Historically, EDA has also been known as skin conductance, galvanic skin response, electrodermal response, psychogalvanic reflex, skin conductance response, sympathetic skin response and skin conductance level. The long history of research into the active and passive electrical properties of the skin by a variety of disciplines has resulted in an excess of names, now standardized to electrodermal activity.
The traditional theory of EDA holds that skin resistance varies with the state of sweat glands in the skin. Sweating is controlled by the sympathetic nervous system, and skin conductance is an indication of psychological or physiological arousal. If the sympathetic branch of the autonomic nervous system is highly aroused, then sweat gland activity also increases, which in turn increases skin conductance. In this way, skin conductance can be a measure of emotional and sympathetic responses. More recent research and additional phenomena suggest that EDA is more complex than it seems, and research continues into the source and significance of EDA.


In 1849, Dubois-Reymond in Germany first observed that human skin was electrically active. He immersed the limbs of his subjects in a zinc sulfate solution and found that electric current flowed between a limb with muscles contracted and one that was relaxed. He therefore attributed his EDA observations to muscular phenomena. Thirty years later, in 1878 in Switzerland, Hermann and Luchsinger demonstrated a connection between EDA and sweat glands. Hermann later demonstrated that the electrical effect was strongest in the palms of the hands, suggesting that sweat was an important factor.
Vigouroux, working with emotionally distressed patients, was the first researcher to relate EDA to psychological activity. In 1888, the French neurologist Féré demonstrated that skin resistance activity could be changed by emotional stimulation and that activity could be inhibited by drugs.
In 1889 in Russia, Ivane Tarkhnishvili observed variations in skin electrical potentials in the absence of any external stimuli, and he developed a meter to observe the variations as they happened in real time.
The scientific study of EDA began in the early 1900s. One of the first references to the use of EDA instruments in psychoanalysis is the book by C. G. Jung entitled Studies in Word Analysis, published in 1906. Jung and his colleagues used the meter to evaluate the emotional sensitivities of patients to lists of words during word association. Jung was so impressed with EDA monitoring, he allegedly cried, "Aha, a looking glass into the unconscious!" Jung described his use of the device in counseling in his book, Studies in Word Association, and such use has continued with various practitioners.
The controversial Austrian psychoanalyst Wilhelm Reich also studied EDA in his experiments at the Psychological Institute at the University of Oslo, in 1935 and 1936, to confirm the existence of a bio-electrical charge behind his concept of vegetative, pleasurable "streamings".
By 1972, more than 1500 articles on electrodermal activity had been published in professional publications, and today EDA is regarded as the most popular method for investigating human psychophysiological phenomena. As of 2013, EDA monitoring was still on the increase in clinical applications.


Skin conductance is not under conscious control. Instead, it is modulated autonomously by sympathetic activity which drives human behavior, cognitive and emotional states on a subconscious level. Skin conductance, therefore, offers direct insights into autonomous emotional regulation.
Human extremities, including fingers, palms, and soles of feet display different bio-electrical phenomena. They can be detected with an EDA meter, a device that displays the change electrical conductance between two points over time. The two current paths are along the surface of the skin and through the body. Active measuring involves sending a small amount of current through the body.
Some studies include the human skin's response to alternating current, including recently deceased bodies.

Physiological basis

There is a relationship between emotional arousal and sympathetic activity, although the electrical change alone does not identify which specific emotion is being elicited. These autonomic sympathetic changes alter sweat and blood flow, which in turn affects GSR and GSP. The amount of sweat glands varies across the human body, being highest in hand and foot regions. The response of the skin and muscle tissue to external and internal stimuli can cause the conductance to vary by several microsiemens. A correctly calibrated device can record and display the subtle changes.
The combined changes between electrodermal resistance and electrodermal potential make up electrodermal activity. Galvanic skin resistance is an older term that refers to the recorded electrical resistance between two electrodes when a very weak current is steadily passed between them. The electrodes are normally placed about an inch apart, and the resistance recorded varies according to the emotional state of the subject. Galvanic skin potential refers to the voltage measured between two electrodes without any externally applied current. It is measured by connecting the electrodes to a voltage amplifier. This voltage also varies with the emotional state of the subject.


A painful stimulus such as a pinprick elicits a sympathetic response by the sweat glands, increasing secretion. Although this increase is generally very small, sweat contains water and electrolytes, which increase electrical conductivity, thus lowering the electrical resistance of the skin. These changes in turn affect GSR. Another common manifestation is the vasodilation of blood vessels in the face, referred to as blushing, as well as increased sweating that occurs when one is embarrassed.
EDA is highly responsive to emotions in some people. Fear, anger, startled response, orienting response, and sexual feelings are among the reactions that may be reflected in EDA. These responses are utilized as part of the polygraph or lie detector test.
EDA in regular subjects differs according to feelings of being treated fairly or unfairly, but psychopaths have been shown to manifest no such differences. This indicates that the EDA record of a polygraph may be deceptive in a criminal investigation.


EDA is a common measure of autonomic nervous system activity, with a long history of being used in psychological research. Hugo D. Critchley, Chair of Psychiatry at the Brighton and Sussex Medical School states, "EDA is a sensitive psychophysiological index of changes in autonomic sympathetic arousal that are integrated with emotional and cognitive states." Many biofeedback therapy devices utilize EDA as an indicator of the user's stress response with the goal of helping the user to control anxiety. EDA is used to assess an individual's neurological status without using traditional, but uncomfortable and expensive, EEG-based monitoring.
Oftentimes, EDA monitoring is combined with the recording of heart rate, respiratory rate, and blood pressure, because they are all autonomically dependent variables. EDA measurement is one component of modern polygraph devices, which are often used as lie detectors.
The E-meter used by the Church of Scientology as part of its practice of "auditing" and "security checking", is a custom EDA measurement device.

Possible problems

External factors such as temperature and humidity affect EDA measurements, which can lead to inconsistent results. Internal factors such as medications and hydration can also change EDA measurements, demonstrating inconsistency with the same stimulus level. Also, the classic understanding has treated EDA as if it represented one homogeneous change in arousal across the body, but in fact different locations of its measurement can lead to different responses; for example, the responses on the left and right wrists are driven by different regions of the brain, providing multiple sources of arousal; thus, the EDA measured in different places on the body varies not only with different sweat gland density but also with different underlying sources of arousal.
Lastly, electrodermal responses are delayed 1–3 seconds. These show the complexity of determining the relationship between EDA and sympathetic activity. The skill of the operator may be a significant factor in the successful application of the tool.