Dye-sensitized solar cell


A dye-sensitized solar cell is a low-cost solar cell belonging to the group of thin film solar cells. It is based on a semiconductor formed between a photo-sensitized anode and an electrolyte, a photoelectrochemical system. The modern version of a dye solar cell, also known as the Grätzel cell, was originally co-invented in 1988 by Brian O'Regan and Michael Grätzel at UC Berkeley and this work was later developed by the aforementioned scientists at the École Polytechnique Fédérale de Lausanne until the publication of the first high efficiency DSSC in 1991. Michael Grätzel has been awarded the 2010 Millennium Technology Prize for this invention.
The DSSC has a number of attractive features; it is simple to make using conventional roll-printing techniques, is semi-flexible and semi-transparent which offers a variety of uses not applicable to glass-based systems, and most of the materials used are low-cost. In practice it has proven difficult to eliminate a number of expensive materials, notably platinum and ruthenium, and the liquid electrolyte presents a serious challenge to making a cell suitable for use in all weather. Although its conversion efficiency is less than the best thin-film cells, in theory its price/performance ratio should be good enough to allow them to compete with fossil fuel electrical generation by achieving grid parity. Commercial applications, which were held up due to chemical stability problems, had been forecast in the European Union Photovoltaic Roadmap to significantly contribute to renewable electricity generation by 2020.

Current technology: semiconductor solar cells

In a traditional solid-state semiconductor, a solar cell is made from two doped crystals, one doped with n-type impurities, which add additional free conduction band electrons, and the other doped with p-type impurities, which add additional electron holes. When placed in contact, some of the electrons in the n-type portion flow into the p-type to "fill in" the missing electrons, also known as electron holes. Eventually enough electrons will flow across the boundary to equalize the Fermi levels of the two materials. The result is a region at the interface, the p–n junction, where charge carriers are depleted and/or accumulated on each side of the interface. In silicon, this transfer of electrons produces a potential barrier of about 0.6 to 0.7 eV.
When placed in the sun, photons of the sunlight can excite electrons on the p-type side of the semiconductor, a process known as photoexcitation. In silicon, sunlight can provide enough energy to push an electron out of the lower-energy valence band into the higher-energy conduction band. As the name implies, electrons in the conduction band are free to move about the silicon. When a load is placed across the cell as a whole, these electrons will flow out of the p-type side into the n-type side, lose energy while moving through the external circuit, and then flow back into the p-type material where they can once again re-combine with the valence-band hole they left behind. In this way, sunlight creates an electric current.
In any semiconductor, the band gap means that only photons with that amount of energy, or more, will contribute to producing a current. In the case of silicon, the majority of visible light from red to violet has sufficient energy to make this happen. Unfortunately higher energy photons, those at the blue and violet end of the spectrum, have more than enough energy to cross the band gap; although some of this extra energy is transferred into the electrons, the majority of it is wasted as heat. Another issue is that in order to have a reasonable chance of capturing a photon, the n-type layer has to be fairly thick. This also increases the chance that a freshly ejected electron will meet up with a previously created hole in the material before reaching the p–n junction. These effects produce an upper limit on the efficiency of silicon solar cells, currently around 20% for common modules and up to 27.1% for the best laboratory cells.
By far the biggest problem with the conventional approach is cost; solar cells require a relatively thick layer of doped silicon in order to have reasonable photon capture rates, and silicon processing is expensive. There have been a number of different approaches to reduce this cost over the last decade, notably the thin-film approaches, but to date they have seen limited application due to a variety of practical problems. Another line of research has been to dramatically improve efficiency through the multi-junction approach, although these cells are very high cost and suitable only for large commercial deployments. In general terms the types of cells suitable for rooftop deployment have not changed significantly in efficiency, although costs have dropped somewhat due to increased supply.

Dye-sensitized solar cells

In the late 1960s it was discovered that illuminated organic dyes can generate electricity at oxide electrodes in electrochemical cells. In an effort to understand and simulate the primary processes in photosynthesis the phenomenon was studied at the University of California at Berkeley with chlorophyll extracted from spinach. On the basis of such experiments electric power generation via the dye sensitization solar cell principle was demonstrated and discussed in 1972. The instability of the dye solar cell was identified as a main challenge. Its efficiency could, during the following two decades, be improved by optimizing the porosity of the electrode prepared from fine oxide powder, but the instability remained a problem.
A modern n-type DSSC, the most common type of DSSC, is composed of a porous layer of titanium dioxide nanoparticles, covered with a molecular dye that absorbs sunlight, like the chlorophyll in green leaves. The titanium dioxide is immersed under an electrolyte solution, above which is a platinum-based catalyst. As in a conventional alkaline battery, an anode and a cathode are placed on either side of a liquid conductor.
The working principle for n-type DSSCs can be summarized into a few basic steps. Sunlight passes through the transparent electrode into the dye layer where it can excite electrons that then flow into the conduction band of the n-type semiconductor, typically titanium dioxide. The electrons from titanium dioxide then flow toward the transparent electrode where they are collected for powering a load. After flowing through the external circuit, they are re-introduced into the cell on a metal electrode on the back, also known as the counter electrode, and flow into the electrolyte. The electrolyte then transports the electrons back to the dye molecules and regenerates the oxidized dye.
The basic working principle above, is similar in a p-type DSSC, where the dye-sensitised semiconductor is of p-type nature. However, instead of injecting an electron into the semiconductor, in a p-type DSSC, a hole flows from the dye into the valence band of the p-type semiconductor.
Dye-sensitized solar cells separate the two functions provided by silicon in a traditional cell design. Normally the silicon acts as both the source of photoelectrons, as well as providing the electric field to separate the charges and create a current. In the dye-sensitized solar cell, the bulk of the semiconductor is used solely for charge transport, the photoelectrons are provided from a separate photosensitive dye. Charge separation occurs at the surfaces between the dye, semiconductor and electrolyte.
The dye molecules are quite small, so in order to capture a reasonable amount of the incoming light the layer of dye molecules needs to be made fairly thick, much thicker than the molecules themselves. To address this problem, a nanomaterial is used as a scaffold to hold large numbers of the dye molecules in a 3-D matrix, increasing the number of molecules for any given surface area of cell. In existing designs, this scaffolding is provided by the semiconductor material, which serves double-duty.

Counter electrode materials

One of the most important components of DSSC is the counter electrode. As stated before, the counter electrode is responsible for collecting electrons from the external circuit and introducing them back into the electrolyte to catalyze the reduction reaction of the redox shuttle, generally I3 to I. Thus, it is important for the counter electrode to not only have high electron conductivity and diffusive ability, but also electrochemical stability, high catalytic activity and appropriate band structure. The most common counter electrode material currently used is platinum in DSSCs, but is not sustainable owing to its high costs and scarce resources. Thus, much research has been focused towards discovering new hybrid and doped materials that can replace platinum with comparable or superior electrocatalytic performance. One such category being widely studied includes chalcogen compounds of cobalt, nickel, and iron, particularly the effects of morphology, stoichiometry, and synergy on the resulting performance. It has been found that in addition to the elemental composition of the material, these three parameters greatly impact the resulting counter electrode efficiency. Of course, there are a variety of other materials currently being researched, such as highly mesoporous carbons, tin-based materials, gold nanostructures, as well as lead-based nanocrystals. However, the following section compiles a variety of ongoing research efforts specifically relating to CCNI towards optimizing the DSSC counter electrode performance.

Morphology

Even with the same composition, morphology of the nanoparticles that make up the counter electrode play such an integral role in determining the efficiency of the overall photovoltaic. Because a material's electrocatalytic potential is highly dependent on the amount of surface area available to facilitate the diffusion and reduction of the redox species, numerous research efforts have been focused towards understanding and optimizing the morphology of nanostructures for DSSC counter electrodes.
In 2017, Huang et al. utilized various surfactants in a microemulsion-assisted hydrothermal synthesis of CoSe2/CoSeO3 composite crystals to produce nanocubes, nanorods, and nanoparticles. Comparison of these three morphologies revealed that the hybrid composite nanoparticles, due to having the largest electroactive surface area, had the highest power conversion efficiency of 9.27%, even higher than its platinum counterpart. Not only that, the nanoparticle morphology displayed the highest peak current density and smallest potential gap between the anodic and cathodic peak potentials, thus implying the best electrocatalytic ability.
With a similar study but a different system, Du et al. in 2017 determined that the ternary oxide of NiCo2O4 had the greatest power conversion efficiency and electrocatalytic ability as nanoflowers when compared to nanorods or nanosheets. Du et al. realized that exploring various growth mechanisms that help to exploit the larger active surface areas of nanoflowers may provide an opening for extending DSSC applications to other fields.